首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this work, we study distributed model predictive control (DMPC) of nonlinear systems subject to communication disruptions - communication channel noise and data losses - between distributed controllers. Specifically, we focus on a DMPC architecture in which one of the distributed controllers is responsible for ensuring closed-loop stability while the rest of the distributed controllers communicate and cooperate with the stabilizing controller to further improve the closed-loop performance. To handle communication disruptions, feasibility problems are incorporated in the DMPC architecture to determine if the data transmitted through the communication channel is reliable or not. Based on the results of the feasibility problems, the transmitted information is accepted or rejected by the stabilizing MPC. In order to ensure the stability of the closed-loop system under communication disruptions, each model predictive controller utilizes a stability constraint which is based on a suitable Lyapunov-based controller. The theoretical results are demonstrated through a nonlinear chemical process example.  相似文献   

2.
This article presents a direct adaptive fuzzy control scheme for a class of uncertain continuous-time multi-input multi-output nonlinear (MIMO) dynamic systems. Within this scheme, fuzzy systems are employed to approximate an unknown ideal controller that can achieve control objectives. The adjustable parameters of the used fuzzy systems are updated using a gradient descent algorithm that is designed to minimize the error between the unknown ideal controller and the fuzzy controller. The stability analysis of the closed-loop system is performed using a Lyapunov approach. In particular, it is shown that the tracking errors are bounded and converge to a neighborhood of the origin. Simulations performed on a two-link robot manipulator illustrate the approach and exhibit its performance.  相似文献   

3.
基于神经网络与多模型的非线性自适应广义预测解耦控制   总被引:1,自引:0,他引:1  
针对一类非线性多变量离散时间动态系统,提出了基于神经网络与多模型的非线性自适应广义预测解耦控制方法.该控制方法由线性鲁棒广义预测解耦控制器和神经网络非线性广义预测解耦控制器以及切换机构组成.线性鲁棒广义预测解耦控制器用于保证闭环系统输入输出信号有界,神经网络非线性广义预测解耦控制器能够改善系统性能.切换策略通过对上述两种控制器的切换,保证系统稳定的同时,改善系统性能.同时本文给出了所提自适应解耦控制方法的稳定性和收敛性分析.最后,通过仿真实例验证了该方法的有效性.  相似文献   

4.
In this article, a nonlinear tracking controller is designed based on Lyapunov stability for a novel aerial robot. The proposed 6‐rotor configuration improves stability and payload lifting capacity of the robot compared with conventional quadrotors while avoiding further complexities in the robot dynamics and steering principles. The dynamical model of the robot is derived using Newton‐Euler method. The model represents a nonlinear, coupled, and underactuated system. The proposed control strategy includes 2 main parts: an attitude controller and a position controller. Both the attitude and position controls are Lyapunov‐based nonlinear tracking controllers that guarantee the asymptotic convergence of the states' tracking errors to zero. Simulation results are presented to illustrate appropriate performance of the closed‐loop system in terms of position/attitude tracking even in the presence of wind disturbance.  相似文献   

5.
The performance of linear and nonlinear temperature control schemes is assessed for an open-loop unstable gas-phase polyethylene reactor (GPPER), based on speed, damping, robustness and the ability to maintain closed-loop stability in different operating regimes. An existing industrial GPPER model is improved by modelling the temperature states in the external heat exchanger using linear and nonlinear driving force models with varying numbers of heat transfer stages. Differences in heat exchanger models do not produce gain mismatch but do result in phase mismatch. It is shown that the nonlinear error trajectory controller (ETC) exhibits significantly superior responses in terms of speed, damping and robustness compared with an optimally-tuned PID controller. Therefore, substantial benefits could be realized using nonlinear controllers because they can provide good disturbance rejection capabilities and ensure closed-loop stability over a wide range of operating conditions. An approach is presented for tuning ETCs for minimum-phase processes of arbitrary relative degree.  相似文献   

6.
杨强  刘玉生 《控制与决策》2015,30(6):993-999
基于自适应非线性阻尼,提出一种鲁棒自适应输出反馈控制方法。该方法适用于带有未建模动态、未知非线性、有界扰动、未知非线性参数和不确定控制系数的多输入多输出非线性系统。理论证明,在一定的假设条件下,该方法能保证闭环系统所有动态信号有界;不论有多少不确定非线性参数、多高阶的非线性系统,只需要一个自适应控制参数和观察参数;而且通过选择适当的控制器和观测器参数,能使控制误差和估计误差达到任意小。仿真结果表明了所提出方法的有效性。  相似文献   

7.
本文针对全方位移动机器人轨迹追踪中的摩擦补偿问题,提出了一种改进的非线性自抗扰控制器.首先建立了含有经典静态摩擦模型的全方位移动机器人动力学模型.其次,基于该模型设计非线性控制器和线性扩张状态观测器并给出了系统的稳定性分析.通过将模型已知项加入线性扩张状态观测器中得到摩擦力的估计值,并将估计值用于非线性控制器中摩擦补偿部分.为减小摩擦力对机器人低速运动轨迹追踪控制的影响,非线性控制器采用变增益控制器进行轨迹追踪控制.最后通过仿真结果验证本文提出控制器的有效性.  相似文献   

8.
针对具有时变通信受限的一类非线性信息物理系统,本文采用网络化预测控制策略,对于时变通信时延和数据丢失,不是使用常规的被动方式抑制,而是进行主动补偿.为了使补偿时变通信受限的方式简单、主动和通用,提出了一种新颖的网络化非线性预测控制方法.所设计的网络化非线性预测控制器能达到具有与无网络的本地闭环控制系统完全相同的期望控制...  相似文献   

9.
An adaptive neural network (NN)-based output feedback controller is proposed to deliver a desired tracking performance for a class of discrete-time nonlinear systems, which are represented in non-strict feedback form. The NN backstepping approach is utilized to design the adaptive output feedback controller consisting of: (1) an NN observer to estimate the system states and (2) two NNs to generate the virtual and actual control inputs, respectively. The non-causal problem encountered during the control design is overcome by using a dynamic NN which is constructed through a feedforward NN with a novel weight tuning law. The separation principle is relaxed, persistency of excitation condition (PE) is not needed and certainty equivalence principle is not used. The uniformly ultimate boundedness (UUB) of the closed-loop tracking error, the state estimation errors and the NN weight estimates is demonstrated. Though the proposed work is applicable for second order nonlinear discrete-time systems expressed in non-strict feedback form, the proposed controller design can be easily extendable to an nth order nonlinear discrete-time system.  相似文献   

10.
This paper presents an output feedback tracking control scheme for a three-wheeled omnidirectional mobile robot, based on passivity property and a modified generalized proportional integral (GPI) observer. The proposed control approach is attractive from an implementation point of view, since only one robot geometrical parameter (i.e., contact radius) is required. Firstly, a nominal dynamic model is given and the passivity property is analyzed. Then the controller is designed based on passivity property and a modified GPI observer. The controller design objective is to preserve the passivity property of the robot system in the closed-loop system, which is conceptually different from the traditional model-based control methodology. Particularly, the designed control system takes full advantage of the robot natural damping. Therefore, only considerably small or non differential feedback is needed. In addition, theoretical analysis is given to show the closed-loop stability behavior. Finally, experiments are conducted to validate the effectiveness of the proposed control system design in both tracking and robustness performance.  相似文献   

11.
A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided by using the concept of backstepping. An adaptive algorithm is developed in the kinematic controller to approximate the unknown kinematic parameters, and a simple single-layer neural network is used to express the highly nonlinear robot dynamics in terms of the known and unknown parameters. In order to attenuate the effects of the uncertainties and disturbances on tracking performance, a sliding mode control term is added to the dynamic controller. In the deterministic design of feedback controllers for the uncertain dynamic systems, upper bounds on the norm of the uncertainties are an important clue to guarantee the stability of the closed-loop system. However, sometimes these upper bounds may not be easily obtained because of the complexity of the structure of the uncertainties. Thereby, simple adaptation laws are proposed to approximate upper bounds on the norm of the uncertainties to address this problem. The stability of the proposed control system is shown through the Lyapunov method. Lastly, a design example for a mobile robot with two actuated wheels is provided and the feasibility of the controller is demonstrated by numerical simulations.  相似文献   

12.
In the design of predictive controllers (MPC), parameterisation of degrees of freedom by Laguerre functions, has shown to improve the controller performance and feasible region. However, an open question remains: how to select the optimal tuning parameters? Moreover, optimality will depend on the size of the feasible region of the controller, the system's closed-loop performance and the online computational cost of the algorithm. This paper develops a method for a systematic selection of tuning parameters for a parameterised predictive control algorithm. In order to do this, a multiobjective problem is posed and then solved using a multiobjective evolutionary algorithm (MOEA) given that the objectives are in conflict. Numerical simulations show that the MOEA is a useful tool to obtain a suitable balance between feasibility, performance and computational cost.  相似文献   

13.
A direct adaptive control framework for a class of nonlinear matrix second-order dynamical systems with state-dependent uncertainty is developed. The proposed framework guarantees global asymptotic stability of the closed-loop system states associated with the plant dynamics without requiring any knowledge of the system nonlinearities other than the assumption that they are continuous and lower bounded. Generalizations to the case where the system nonlinearities are unbounded are also considered. In the special case of matrix second-order systems with polynomial nonlinearities with unknown coefficients and unknown order, we provide a universal adaptive controller that guarantees closed-loop stability of the plant states.  相似文献   

14.
指令跟踪自适应广义预测控制及其应用   总被引:1,自引:0,他引:1  
现有的广义预测控制系统其闭环性能受可调参数影响较大,它的目标函数无法直接规定 闭环性能.该文提出一种具有独立跟踪和调节目标的新型自适应广义预测控制算法,并将其 应用于快速时变的导弹控制系统设计中.这种算法利用参考模型规定对指令信号的跟踪性 能,减少了可调参数对闭环性能的影响.仿真结果证实了该算法的有效性.  相似文献   

15.
A multilayer neural net (NN) controller for a general serial-link robot arm is developed. The structure of the NN controller is derived using a filtered error approach. It is argued that standard backpropagation tuning, when used for real-time closed-loop control, can yield unbounded NN weights if: (1) the net can not exactly reconstruct a certain required control function, (2) there are bounded unknown disturbances in the robot dynamics, or (3) the robot arm has more than one link (i.e. nonlinear case). On-line weight tuning algorithms including correction terms to backpropagation, plus an added robustifying signal, guarantee tracking as well as bounded weights. The correction terms involve a second-orderforward-propagated wave in the backprop network.  相似文献   

16.
Adaptive RBF neural network control of robot with actuator nonlinearities   总被引:1,自引:0,他引:1  
In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion.  相似文献   

17.
An observer-based controller for Lipschitz nonlinear systems is presented. The necessary and sufficient condition to ensure stability of state-observer as well as nonlinear system with state-feedback control law is derived. According to the separation principle, the closed-loop stability is guaranteed based on dual problems concerning stability of state-observer and stability of state-feedback parts. Also, the stability region for locally Lipschitz nonlinearities is obtained. A practical synthesis approach to achieve controller parameters is then given which yields the closed-loop convergence with less conservative results. The effectiveness of the proposed synthesis method is finally demonstrated by simulation results.  相似文献   

18.
The performance of model-based control systems depends a lot on the process model quality, hence the process model-plant mismatch is an important factor degrading the control performance. In this paper, a new methodology based on a process model evaluation index is proposed for detecting process model mismatch in closed-loop control systems. The proposed index is the ratio between the variance of the disturbance innovation and that of the model quality variable. The disturbance innovations are estimated from the routine operation data by an orthogonal projection method. The model quality variable can be obtained using the closed-loop data and the disturbance model estimated by adaptive Least absolute shrinkage and selection operator (Lasso) method. When the order of the disturbance model is less than 2 or the process time delay is large enough, no external perturbations are required. Besides, the proposed index is independent of the controller tuning and insensitive to the changes in disturbance model, which indicates that the proposed method can isolate the process model-plant mismatch from other factors affecting the overall control performance. Three systems with proportional integral (PI) controller, linear quadratic (LQ) controller and unconstrained model predictive control (MPC) respectively are presented as examples to verify the effectiveness of the proposed technique. Besides, Tennessee Eastman process shows the proposed method is able to detect process model mismatch of nonlinear systems.  相似文献   

19.
在非平衡负载条件下,轮式移动机器人(WMR)的前进、转向速度耦合,影响着轨迹跟踪和避障等运动控制性能.为此,本文提出了一种基于抗扰PID(DR–PID)控制器的WMR速度调节主动抗扰(ADR)控制策略.首先,建立WMR的速度耦合模型,引入解耦矩阵减小静态耦合作用;然后,基于一类改进干扰观测器(DOB)控制方法,设计一种具有ADR能力的PID控制器,即DR–PID,用于WMR的速度分散调节.进一步,考虑高频增益不匹配/不确定性,分析闭环系统稳定性条件.所得结论揭示了PID控制器的抗扰机理;最后,在不平衡负载条件下开展WMR运动控制实验研究,实验结果验证了所提方法的有效性.  相似文献   

20.
In this paper, a nonlinear robust adaptive control algorithm is designed and analyzed for a class of single-input nonlinear systems with unknown nonlinearities. The controller employs a single layer neural network to estimate the unknown plant nonlinearities on-line. The proposed controller is continuous and guarantees closed-loop semi-global stability and convergence of the tracking error to a small residual set. Furthermore, it handles the situation where the estimated plant becomes uncontrollable without any restrictive assumptions. In contrast to previous work on the same subject, the size of the residual tracking error can be specified a priori and is guaranteed by choosing certain design parameters. A procedure for choosing these parameters is presented. An example is used to demonstrate the performance and properties of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号