首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
GIP is an important insulinotropic hormone (incretin) that has also been implicated in fat metabolism. There is controversy regarding the actions of GIP on adipocytes. In the current study, the existence of GIP receptors and effects of GIP on lipolysis were studied in differentiated 3T3-L1 cells. GIP receptor messenger RNA was detected by RT-PCR and RNase protection assay. Receptors were detected in binding studies (IC50 26.7 +/- 0.7 nM). GIP stimulated glycerol release with an EC50 of 3.28 +/- 0.63 nM. GIP (10(-9)-10(-7) M) +/- IBMX increased cAMP production by 1180-2246%. The adenylyl cyclase inhibitor MDL 12330A (10(-4) M) inhibited GIP-induced glycerol production by >90%, and reduced cAMP responses to basal. Preincubation of 3T3-L1 cells with insulin inhibited glycerol responses to GIP, and the inhibitory effect of insulin was blocked by the phosphatidylinositol 3'-kinase inhibitor, wortmannin. It is concluded that GIP stimulates glycerol release in 3T3-L1 cells primarily via stimulation of cAMP production, and that insulin antagonizes GIP-induced lipolysis in a wortmannin-sensitive fashion. It is suggested that effects of GIP on fat metabolism in vivo may depend upon the circulating insulin level, and that meal-released GIP may elevate circulating fatty acids, thus optimizing pancreatic beta-cell responsiveness to stimulation by glucose and GIP.  相似文献   

2.
The cloned human serotonin 1D (5-HT1D) receptor has been shown to inhibit adenylate cyclase while the corresponding cloned dog receptor has been characterized by its enhancement of cAMP accumulation. To resolve this apparent discrepancy, the human 5-HT1D receptor has been cloned and expressed in Chinese hamster ovary (CHO) cells and the corresponding dog receptor expressed in mutant Y1 adrenal (Y1 Kin-8) cells. It is shown that both receptors when activated by sumatriptan depress forskolin induced adenosine 3'5'-cyclic monophosphate (cAMP) accumulation by a pertussis toxin sensitive mechanism, presumably involving Gi (the adenylate cyclase inhibitory GTP transducing protein). In the absence of forskolin, the dog receptor enhances cAMP accumulation, thus activating Gs (the adenylate cyclase stimulatory GTP transducing protein). When its overriding action on Gi is blocked by pertussis toxin pretreatment, the human receptor also enhances cAMP accumulation. Thus both 5-HT1D receptors activate markedly Gi and to a lesser extent Gs and can exert opposite effects on the same effector system, adenylate cyclase.  相似文献   

3.
We have investigated the response of adenylate cyclase to GTP and to dopamine (DA) in striatal membranes of rats treated for 3 weeks with chlorpromazine or haloperidol, and further measured the level of Gi (an inhibitory GTP-binding protein) or Go (a similar GTP-binding protein of unknown function) in 3 areas (cerebral cortex, striatum and hippocampus) utilizing pertussis toxin-catalyzed ADP ribosylation. In saline-treated control membranes, GTP exerted a biphasic effect on basal and DA-stimulated enzyme activity--peak levels of stimulation by DA plus GTP were observed at 1 microM GTP. Conversely, dopaminergic inhibitory effects at 10-100 microM GTP were completely attenuated in chlorpromazine or haloperidol-treated membranes. D2 inhibition of adenylate cyclase by the selective D2 agonist PPHT was also attenuated due to these neuroleptic treatments, while an increase in D2 receptor binding was observed. The pertussis toxin ADP-ribosylation of G-proteins (Gi/Go) did not differ significantly in any area. This indicates that long-term neuroleptic treatments increased D2 receptor binding, but attenuated D2 inhibition of adenylate cyclase, and exercised no influence on pertussis toxin ADP-ribosylation.  相似文献   

4.
The glucose-dependent insulinotropic peptide receptor (GIP-R) is a member of the G protein-coupled receptors. Recent studies have indicated that elevated serum GIP concentrations in type II diabetic patients might induce desensitization of the GIP-R, and this mechanism could contribute to impaired insulin secretion. The cellular and molecular mechanisms governing GIP desensitization are unknown. Here, we report the results of studies on a new family of proteins known as regulators of G protein signaling (RGS) that have been shown to mediate the desensitization process of other receptors. GIP-R and RGS1, -2, -3, and -4 complementary DNAs were cotransfected into human embryonic kidney cells (L293). GIP-stimulated cAMP generation in control cells and in those coexpressing RGS1, -3, and -4 displayed a dose-dependent increase 10 min after GIP treatment. In contrast, RGS2 expression inhibited the GIP-induced cAMP response by 50%, a response similar to that of cells desensitized by preincubation with 10(-7) M GIP. In betaTC3 cells, preincubation of GIP attenuated GIP-induced insulin release by 45% at 15 min and by 55% at 30 min. Expression of RGS2 in the betaTC3 cells significantly decreased GIP-stimulated insulin secretion, whereas glucose-induced insulin release was not affected. RGS2 messenger RNA was identified by Northern blot analysis to be expressed endogenously in betaTC3 and L293 cells, and its level was significantly induced by GIP treatment in betaTC3 cells. Moreover, RGS2 bound Gs alpha protein in an in vitro system, suggesting that RGS2 attenuated the Gs-adenylate cyclase signaling pathway. These results suggest a potential role for RGS2 in modulating GIP-mediated insulin secretion in pancreatic islet cells.  相似文献   

5.
1. We examined the cooperative effect of a newly synthesized oral hypoglycaemic agent, KAD-1229 with glucose on insulin, glucagon and somatostatin secretion in the isolated perfused pancreas of the rat. 2. KAD-1229 stimulated concentration-dependently the first phase of insulin secretion without the second phase in the presence of 2.8 mM glucose, while it stimulated both the first and the second phase of insulin release in the presence of 5.6 mM glucose. It was confirmed that the first phase of insulin release is depolarization-induced release with no other additional signal transduction. 3. KAD-1229 also enhanced insulin release evoked by 16.7 mM glucose, a concentration known to inhibit the ATP-sensitive K+ current completely. 4. A low concentration (2.8 mM) of glucose stimulated somatostatin release transiently, while a higher concentration (16.7 mM) of glucose exerted a sustained stimulation. KAD-1229 stimulated somatostatin secretion in a concentration-dependent manner irrespective of glucose concentrations. 5. When glucagon release was stimulated with 2.8 mM glucose, KAD-1229 inhibited this hypoglycaemia-induced glucagon secretion. 6. When pancreata from rats pretreated with streptozotocin (STZ) 60 mg kg-1 were perfused, the basal secretion of glucagon was markedly elevated, and the glucagon response to the low glucose was abolished. Further, the insulin and somatostatin responses to KAD-1229 were largely attenuated. KAD-1229 showed transient enhancement followed by inhibition of the glucagon release from the STZ-pretreated rat pancreas. 7. We conclude that KAD-1229 stimulates insulin and somatostatin release, while it inhibits glucagon release following transient stimulation.  相似文献   

6.
[des-His1, des-Phe6,Glu9]Glucagon-NH2 is a newly designed glucagon antagonist. This analog has a binding IC50 of 48 nM (compared to glucagon IC50 of 1.5 nM) and demonstrates pure antagonism in an adenylate cyclase assay. Although the number of glucagon antagonists has grown rapidly recently, closer examination suggested that many of these antagonists retained very low, almost imperceptible levels of cAMP accumulation that were sufficient to elicit an in vivo biological response. To investigate more carefully this secondary biological signal, we measured cAMP accumulation in a revised assay using isolated hepatocytes in the presence of the phosphodiesterase (PDE) inhibitor Rolipram. The PDE inhibitors Rolipram and isobutyl-1-methylxanthine (IBMX) increased the sensitivity of the cAMP accumulation assay from approximately 10-fold for the native hormone to 35-fold above basal levels. On the other hand, amrinone, another PDE inhibitor, did not affect the cAMP accumulation caused by glucagon. The use of PDE inhibitors indicated that three glucagon analogs that had previously been reported to have strong antagonist properties in classical adenylate cyclase assays were actually weak partial agonists in this new assay system. [N alpha-Trinitrophenyl-His1, homo-Arg12]glucagon, [des-amino-His1,D-Phe4,Tyr5, Arg12, Lys17,18,Glu21]glucagon, and [des-His1,Glu9]glucagon-NH2 demonstrated 233%, 21%, and 5.5% cAMP accumulation relative to the native hormone in the presence of 25 microM Rolipram. On the other hand, [des-His1,des-Phe6,Glu9]glucagon-NH2, a newly designed glucagon antagonist, did not activate adenylate cyclase in the presence of Rolipram up to a maximal physiological concentration of 1 microM, indicating that it was a pure antagonist of glucagon-induced adenylate cyclase activity and also the first one in this class. This compound and others were tested in a glycogen phosphorylase assay. As [des-His1,des- Phe6,Glu9]glucagon-NH2 did not activate phosphorylase activity, it was chosen as our candidate for in vivo testing in streptozotocin-induced diabetic rats. An initial dose of 0.75 mg/kg was found to cause the greatest lowering of blood glucose levels (to 63% of the initial levels in 15 min) when the bolus was followed by continuous infusion of 25 micrograms/kgxmin for 1 h.  相似文献   

7.
Glucagon-like peptide 1 is a gastrointestinally derived hormone with profound effects on nutrient-induced pancreatic hormone release. GLP-1 modulates insulin, glucagon and somatostatin secretion by binding to guanine nucleotide binding protein-coupled receptors resulting in the activation of adenylate cyclase and generation of cyclic adenosine monophosphate (cAMP). In the B-cell, cAMP, via activation of protein kinase A, interacts with a plethora of signal transduction processes including ion channel activity, intracellular Ca2+ handling and exocytosis of the insulin-containing granules. The stimulatory action of GLP-1 on insulin secretion, contrary to that of the currently used hypoglycaemic sulphonylureas, is glucose dependent and requires the presence of normal or elevated concentrations of the sugar. For this reason, GLP-1 attracts much interest as a possible novel principle for the treatment of human type-2 diabetes. Here we review the actions of GLP-1 on islet cell function and attempt to integrate current knowledge into a working model for the control of pancreatic hormone secretion.  相似文献   

8.
This study concerns whether the pancreatic beta cell expresses cell-surface ectopeptidases that are capable of proteolysis of peptide hormones and neuropeptides that modify glucose-dependent insulin release. These biochemical investigations of the RINm5F cell line found that these cells express ectopeptidases. We have characterized the limited endoproteolysis of GLP-1 (7-36) amide that occurs in the presence of RINm5F plasma membranes. The products and the sensitivity to specific peptidase inhibitors of the proteolysis is characteristic of neutral endopeptidase (NEP) 24.11. Vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), amylin, glucagon, glucose-dependent insulinotropic polypeptide (GIP), and exendin-4 also undergo proteolysis in the presence of RIN cell membranes. NEP 24.11-activity in RIN cell membranes was confirmed using a specific fluorogenic assay, by histochemistry, and by comparison with the recombinant enzyme with respect to the kinetics of proteolysis of GLP-1 (7-36) amide and of a fluorogenic substrate. Specific fluorogenic assays revealed the presence of aminopeptidase N and the absence of aminopeptidase A and of dipeptidylpeptidase IV.  相似文献   

9.
Gastric inhibitory polypeptide, originally isolated from porcine intestine, is a gastrointestinal hormone belonging to the vasoactive intestinal peptide (VIP)/glucagon/secretin family. GIP consists of 42 amino acid residues which is derived by proteolytic processing of a GIP precursor. In vivo and in vitro experiments have indicated that GIP auguments glucose-stimulated insulin secretion, suggesting that GIP plays an important role in the regulation of insulin secretion as an incretin. Thus, GIP now is generally referred to as glucose-dependent insulinotropic polypeptide. It is also suggested that GIP may be involved in the pathogenesis of non insulin-dependent diabetes mellitus (NIDDM). GIP exerts its biological actions by binding to its specific receptors, which appear to be coupled to G proteins. We have isolated a cDNA encoding a GIP receptor from a hamster insulinoma(HIT-T15) cDNA library. The hamster GIP receptor is a 462 amino acid protein having seven transmembrane segments. Expression of recombinant of hamster GIP receptors in Chinese hamster ovary (CHO) cells shows that it binds specifically to GIP with high affinity (IC50 = 9.6 nM) and is positively coupled to adenylate cyclase. RNA blot analysis reveals that a 3.8-kb GIP receptor mRNA is expressed at high levels in rat pancreatic islets as well as in HIT-T15 cells.  相似文献   

10.
The purpose of our study was to determine whether Gi-mediated control over adenylyl cyclase in preglomerular arteriolar smooth muscle cells (PGASMC) is enhanced in the spontaneously hypertensive rat (SHR). PGASMC were cultured from preglomerular microvessels isolated from adult SHR (14-15 wk of age) and age-matched WKY rats. Confluent monolayers of cells in third passage were used for the experiments. cAMP released into the media (30 min) as well as cellular levels of cAMP were measured in the presence of a phosphodiesterase inhibitor, 1-isobutyl-3-methyl-xanthine (IBMX; 100 microM) and expressed as pmol/mg protein. Total (released + cellular) cAMP was significantly lower in SHR (14.19 +/- 2.30 pmol/mg protein) as compared with WKY (28.3 +/- 3.04 pmol/mg protein). Correspondingly, the released (4.6 +/- 0.4 pmol/mg protein) as well as cellular (9.78 +/- 2.18 pmol/mg protein) cAMP levels were also significantly lower in SHR when compared with WKY (8.85 +/- 1.26 and 18.86 +/- 2.0 pmol/mg protein, respectively). The steady-state levels of none of the Gi alpha subunits, namely Gi alpha 1, Gi alpha 2 and Gi alpha 3, were higher in the SHR PGASMC. Pertussis toxin treatment (PTX; 100 ng/ml; 24 hr) caused complete ADP-ribosylation of Gi alpha subunits in both WKY and SHR PGASMC. The same treatment of PTX also produced a significant increase in total cAMP in SHR, but not in WKY, such that the total cAMP levels after PTX treatment were not significantly different between the two strains. Interestingly, PTX significantly increased the released (20.26 +/- 0.90 pmol/mg protein) but not the cellular (13.63 +/- 1.63 pmol/mg protein) cAMP in SHR. Forskolin (1 microM) induced similar increases in total cAMP and isoproterenol (1 microM) caused greater increases in total cAMP in SHR cells compared with WKY cells. These data strongly suggest that in SHR PGASMC total adenylyl cyclase activity is not altered. Furthermore, steady-state expressions of Gi alpha-1, Gi alpha-2 and Gi alpha-3 are not increased whereas Gi-mediated inhibition of adenylyl cyclase is augmented in SHR PGASMC.  相似文献   

11.
The bag cell peptides (alpha-, beta-, and gamma-BCP) are secreted by the neuroendocrine bag cells of Aplysia, and provide feedback modulation of bag cell excitability and cAMP levels. We report here that if 200-500 mM NaCl is included in the assay buffer, the BCPs alter adenylate cyclase activity in a manner consistent with their effects on cAMP levels in intact bag cells. Specifically, beta-BCP and the related peptide A from the atrial gland stimulate the enzyme, while the effects of alpha-BCP(1-7) and gamma-BCP are temperature-dependent, stimulating at 30 degrees C and inhibiting at 15 degrees C. Both stimulation and inhibition require GTP, suggesting mediation by Gs and Gi. The ionic requirements of stimulation and inhibition differ: Cl- is necessary to support stimulation, but not inhibition. Moreover, pertussis toxin blocks inhibition, but does not affect stimulation. These results suggest that the temperature-sensitive mechanism lies upstream from the G-proteins in the signal transduction pathway.  相似文献   

12.
The binding of insulin in physiological amounts to human blood platelets, which increases adenylate cyclase-linked prostacyclin receptor numbers on the cell surface, was found to be directly related to the ADP-ribosylation of the Gi alpha. Conversely, resuspension of the insulin-treated platelets in the hormone-free medium decreased both the prostaglandin receptor numbers and ADP-ribosylation of Gi alpha. Furthermore, incubation of platelets with pertussis toxin or its A-protomer, which ADP-ribosylates Gi alpha, also stimulated the binding of the prostanoid. These results suggest that the increase of prostacyclin receptor numbers in platelets is mediated through the ADP-ribosylation of Gi alpha.  相似文献   

13.
Cannabinoid compounds, including the major psychoactive component of marihuana, delta 9-tetrahydrocannabinol (delta 9-THC), have been widely established as being inhibitory on a broad array of humoral and cell-mediated immune responses. The presence of cannabinoid receptors has been identified recently on mouse spleen cells, which possess structural and functional characteristics similar to those of the G-protein coupled cannabinoid receptor originally identified in rat brain. These findings, together with those demonstrating that delta 9-THC inhibits adenylate cyclase in splenocytes, strongly suggest that certain aspects of immune inhibition by cannabinoids may be mediated through a cannabinoid receptor-associated mechanism. The objective of the present studies was to determine whether inhibition of adenylate cyclase is relevant to mouse spleen cell immune function and, if so, whether this inhibition is mediated through a Gi-protein coupled mechanism as previously described in neuronal tissue. Spleen cell activation by the phorbol ester phorbol-12-myristate-13-acetate (PMA), plus the calcium ionophore ionomycin, produced a rapid but transient increase in cytosolic cAMP, which was inhibited completely by immunosuppressive concentrations of delta 9-THC (22 microM) and the synthetic bicyclic cannabinoid CP-55940 (5.2 microM), which produced no effect on cell viability. Inhibition by cannabinoids of lymphocyte proliferative responses to PMA plus ionomycin and sheep erythrocyte (sRBC) IgM antibody-forming cell (AFC) response, was abrogated completely by low concentrations of dibutyryl-cAMP (10-100 microM). Inhibition of the sRBC AFC response by both delta 9-THC (22 microM) and CP-55940 (5.2 microM) was also abrogated by preincubation of splenocytes for 24 hr with pertussis toxin (0.1-100 ng/mL). Pertussis toxin pretreatment of spleen cells was also found to directly abrogate cannabinoid inhibition of adenylate cyclase, as measured by forskolin-stimulated accumulation of intracellular cAMP. These results indicate that inhibition of the sRBC AFC response by cannabinoids is mediated, at least in part, by inhibition of adenylate cyclase through a pertussis toxin-sensitive Gi-protein coupled cannabinoid receptor. Additionally, these studies further support the premise that cAMP is an important mediator of lymphocyte activation.  相似文献   

14.
Incretins are gastrointestinal hormones that act on the pancreas to potentiate glucose-stimulated insulin secretion. Despite the physiological importance of the enteroinsular axis, disruption of glucagon-like peptide (GLP)-1 action is associated with only modest glucose intolerance in GLP-1 receptor -/- (GLP-1R -/-) mice. We show here that GLP-1R -/- mice exhibit compensatory changes in the enteroinsular axis via increased glucose-dependent insulinotropic polypeptide (GIP) secretion and enhanced GIP action. Serum GIP levels in GLP-1R -/- mice were significantly elevated versus those in +/+ control mice after an oral glucose tolerance test (369 +/- 40 vs. 236 +/- 28 pmol/l; P < or = 0.02). Furthermore, GIP perfusion of mice pancreas and isolated islets in the presence of elevated glucose concentrations elicited a significantly greater insulin response in GLP-1R -/- than in +/+ mice (P < or = 0.02-0.05). In contrast, no significant perturbation in the insulin response to perfused glucagon was detected under conditions of low (4.4 mmol/l) or high (16.6 mmol/l) glucose in GLP-1R -/- mice. Total pancreatic insulin but not glucagon content was significantly reduced in GLP-1R -/- compared with in +/+ mice (77 +/- 9 vs. 121 +/- 10 pmol/mg protein; P < or = 0.005). These observations suggest that upregulation of the GIP component of the enteroinsular axis, at the levels of GIP secretion and action, modifies the phenotype resulting from interruption of the insulinotropic activity of GLP-1 in vivo.  相似文献   

15.
The role of hormonal status in the development of aluminum (Al)-dependent renal osteodystrophy, which is characterized by reduced bone matrix deposition, still remains largely unknown. To address this question, we used the osteoblast-like osteosarcoma cell line ROS 17/2.8 to evaluate the role of Al on parathyroid hormone (PTH)- and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-dependent activities in these cells. Al (1 microM) caused an inhibition of basal and 1,25(OH)2D3-induced alkaline phosphatase, but only at low doses (< 1 nM) of the steroid. Al partly inhibited basal osteocalcin (OC) secretion in ROS cells (p < 0.001), and the dose-dependent increase in 1,25(OH)2D3-induced OC release by these cells was also reduced by 1 microM Al at low concentrations of the steroid (< or = 1 nM), whereas high doses of 1,25(OH)2D3 (> or = 5 nM) totally prevented the inhibiting effects of Al. Al also had strong inhibitory actions on PTH-dependent cAMP production by ROS cells over the concentration range tested (0.5-50 nM). This inhibitory action of Al was also observed for PTH-related peptide- (PTHrp, 50 nM) but not for Isoproterenol-dependent (100 nM) cAMP formation. To evaluate more fully the mechanism of this inhibition of cAMP formation, we investigated the effect of Al on toxin-modulated, G protein-dependent regulation of cAMP formation and on the activation of adenylate cyclase by Forskolin. Cholera toxin (CT, 10 micrograms/ml), applied to cells for 4 h prior to PTH challenge, enhanced cAMP production about 2-fold above PTH alone (p < 0.001), a process that was further stimulated by Al. Pertussis toxin (PT, 1 microgram/ml, 4 h) did not modify basal PTH-dependent cAMP formation by ROS cells. However, PT treatment prevented the inhibitory effect of Al on cAMP formation by these cells (p < 0.025). The stimulation of adenylate cyclase by Forskolin (0.1 and 1 microM), which bypasses G protein regulation, was not modified by Al, indicating that Al does not affect adenylate cyclase directly. Northern blot analysis of PTH receptor mRNA levels showed that Al did not modify PTH receptor message in ROS cells. Likewise, Western blot analyses of G protein subunits showed that Al did not significantly alter Gs alpha subunit levels, in accordance with the results obtained for cAMP-dependent formation in response to CT. In contrast, Gi alpha-1 and Gi alpha-2 subunits were decreased by Al treatment, consistent with PT-restricted increases in cAMP formation in Al-treated ROS cells. Taken together, these results suggest that Al has multiple actions in osteoblast-like ROS cells. The effects of Al are modulated by hormonal control of the pathways investigated. Al affects 1,25(OH)2D3-regulated functions only when this steroid is low. Al has large inhibitory effects on PTH- and PTHrp-dependent cAMP formation. This last feature is related to the ability of Al to alter the G protein transducing pathway for PTH/PTHrp-dependent formation of cAMP since it does not affect adenylate cyclase activity directly and does not affect the PTH receptor message level. Thus, Al has stronger deleterious effects in osteoblast-like cells with an already compromised 1,25(OH)2D3 status and can modulate specifically PTH/PTHrp-mediated cAMP formation at the postreceptor level.  相似文献   

16.
Neuropeptide Y (NPY) has been shown to inhibit insulin secretion from the islets of Langerhans. We show that insulin secretion in the insulinoma cell line RIN 5AH is inhibited by NPY. 125I-Peptide YY (PYY) saturation and competition-binding studies using NPY fragments and analogues on membranes prepared from this cell line show the presence of a single class of NPY receptor with a Y1 receptor subtype-like profile. Inhibition of insulin secretion in this cell line by NPY fragments and analogues also shows a Y1 receptor-like profile. Both receptor binding and inhibition of insulin secretion showed the same orders of potency with NPY > [Pro34]-NPY > NPY 3-36 > NPY 13-36. The Y1 receptor antagonist, BIBP 3226, blocks NPY inhibition of insulin secretion from, and inhibits 125I-PYY binding to, RIN 5AH cells. Northern blot analysis using a Y1-receptor specific probe shows that NPY Y1 receptors are expressed by RIN 5AH cells. Y5 receptors are not expressed in this cell line. Neuropeptide Y inhibition of insulin secretion is blocked by incubation with pertussis toxin, implying that the effect is via a G-protein (Gi or Go) coupled receptor. Neuropeptide Y inhibits the activation of adenylyl cyclase by isoprenaline in RIN 5AH cell lysates, and the stimulation of cAMP by glucagon-like peptide-1 (7-36) amide (GLP-1). It also blocks insulin secretion stimulated by GLP-1, but not by dibutyryl cyclic AMP. Hence, we suggest that NPY inhibits insulin secretion from RIN 5AH cells via a Y1 receptor linked through Gi to the inhibition of adenylyl cyclase.  相似文献   

17.
Guanosine triphosphate (GTP)-binding protein subunits were studied by immunoblot analysis in particulate fractions from mature adipocytes, confluent preadipocytes, and in vitro-differentiated preadipocytes. Mature adipocytes express Gi alpha 1, Gi alpha 2, Gi alpha 3, Go alpha, Gq/11 alpha, G13 alpha and the long and short isoforms of Gs alpha, but no Gz alpha or G12 alpha. Confluent and differentiated preadipocytes differ in having a higher content of Gi alpha 3 and G13 alpha and expressing G12 alpha. In contrast, they lack Gi alpha 1, Go alpha, and the short from of Gs alpha. The G-protein alpha subunits Gi alpha 2, Gs alpha (long isoform), and Gq/11 alpha, and G-protein beta subunits were unchanged throughout the differentiation process. By immunoblot and indirect immunofluorescence studies on confluent preadipocytes, we showed that Gi alpha 2 is present in the endoplasmic reticulum and marginally in plasma membranes and nuclei. In contrast, antibodies to Gi alpha 3 stained the Golgi apparatus. The role of G proteins on preadipocyte proliferation was studied using Bordetella pertussis toxin. Exposure of growing cells to this toxin in the presence of fetal calf serum (FCS) decreased [3H]thymidine incorporation by 40% and induced a 40% increase in doubling time. This resulted in a 30% decrease in cell number per well after 48 h. These effects of B. pertussis toxin did not appear to be related to an increase in cyclic adenosine monophosphate (cAMP) concentration, because forskolin had the opposite effect on cell proliferation. Finally, B. pertussis toxin prevented serum-induced Raf1 association to the plasma membrane, possibly by disrupting FCS-induced G beta gamma effects on the Ras/Raf1 pathway. Since Go alpha and Gi alpha 1 subunits were absent in preadipocytes, we conclude that Gi2 and/or Gi3 proteins transduce some mitogenic signals of FCS through release of G beta gamma subunits. The subcellular distribution of Gi alpha 2 and Gi alpha 3 suggests that part of their functions result from interactions with components other than the plasma membrane.  相似文献   

18.
The G protein coupling of human 5-hydroxytryptamine5A (h5-ht5A) receptors was investigated in stably transfected human embryonic kidney (HEK) 293 cells, using radioligand and guanosine-5'[gamma-35S]thiotriphosphate binding to membranes and cyclic adenosine monophosphate measurements in cells. 5-Carboxamido[3H]tryptamine bound to high- and low-affinity sites on h5-ht5A-HEK 293 cell membranes. Guanylyl-imidodiphosphate addition and pertussis toxin pre-treatment abolished high-affinity binding, indicating coupling to G proteins of the Gi/Go family. [N-methyl-3H]Lysergic acid diethylamide bound to a single site; guanylyl-imidodiphosphate and pertussis toxin did not alter lysergic acid diethylamide affinity. 5-Hydroxytryptamine stimulated guanosine-5'[gamma-35S]thiotriphosphate binding to 130% over basal and this effect was completely abolished by pertussis toxin. Various 5-hydroxytryptamine receptor ligands were tested for inhibition of 5-carboxamido[3H]tryptamine binding and in guanosine-5'[gamma-35S]thiotriphosphate binding assays. 5-Hydroxytryptamine consistently inhibited forskolin-induced cyclic adenosine monophosphate formation by 25% in h5-ht5A-HEK 293 cells; no effect was detected on basal cyclic adenosine monophosphate levels, on intracellular Ca2+ concentration or arachidonic acid release. Our studies demonstrate functional coupling of the h5-ht5A receptor to pertussis toxin-sensitive G proteins and to inhibition of adenylate cyclase activity.  相似文献   

19.
To utilize hepatocytes for insulin-producing surrogate cells, we devised a regulatory secretion system by placing proinsulin DNA under the regulatable promoter for phosphoenolpyruvate carboxykinase (PEPCK). The expression of PEPCK is down-regulated by insulin, and up-regulated by cAMP and glucagon. To express insulin in hepatocytes, we constructed an adenoviral insulin expression system. After infection, the hepatocytes secreted immunoreactive insulin (IRI) at an increasing rate. IRI secretion increased over four-fold upon stimulation with 300 microM cAMP and 500 microM of the cAMP-dependent phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). This increase was also observed with glucagon and IBMX. Production was augmented two-fold by the addition of wortmannin, phosphatidylinositol (PI)-3-kinase inhibitor, suggesting that inhibitory insulin signaling to the PEPCK promoter may be mediated through PI-3-kinase. Addition of exogenous insulin to the culture decreased insulin mRNA expression remarkably on Northern blot. Thus, by using a PEPCK promoter for insulin expression, we were able to up-regulate insulin production from hepatocytes with cAMP and glucagon, and down-regulate with insulin itself.  相似文献   

20.
GM1 ganglioside was previously shown to function as a specific regulator of excitatory opioid activity in dorsal root ganglion neurons and F11 hybrid cells, as seen in its facilitation of opioid-induced activation of adenylyl cyclase and its ability to dramatically reduce the threshold opioid concentration required to prolong the action potential duration. The elevated levels of GM1 resulting from chronic opioid exposure of F11 cells were postulated to cause the ensuing opioid excitatory supersensitivity. We now show that GM1 promotes opioid (DADLE)-induced activation of adenylyl cyclase in NG108-15 cells which possess the delta-type of receptor. In keeping with previous studies of other systems, this can be envisioned as conformational interaction of GM1 with the receptor that results in uncoupling of the receptor from Gi and facilitated coupling to Gs. This would also account for the observation that DADLE-induced attenuation of forskolin-stimulated adenylyl cyclase was reversed by GM1, provided the cells were not pretreated with pertussis toxin. When the cells were so pretreated, GM1 evoked an unexpected attenuation of forskolin-stimulated adenylyl cyclase attributed to GM1-promoted influx of calcium which was postulated to inhibit a calcium-sensitive form of adenylyl cyclase. This is concordant with several studies showing GM1 to be a potent modulator of calcium flux. Pertussis toxin in these experiments exerted dual effects, one being to promote interaction of the delta-opioid receptor with Gs through inactivation of Gi, and the other to enhance the GM1-promoted influx of calcium by inactivation of Go; the latter is postulated to function as constitutive inhibitor of the relevant calcium channel. NG108-15 cells thus provide an interesting example of competitive interaction between two GM1-regulated systems involving enhancement of both opioid receptor excitatory activity and calcium influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号