首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-quality, large (10 cm long and 2.5 cm diameter), nuclear spectrometer grade Cd0.9Zn0.1Te (CZT) single crystals have been grown by a controlled vertical Bridgman technique using in-house zone refined precursor materials (Cd, Zn, and Te). A state-of-the-art computer model, multizone adaptive scheme for transport and phase-change processes (MASTRAP), is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown CZT crystal and optimize the thermal profile. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The grown semi-insulating (SI) CZT crystals have demonstrated promising results for high-resolution room-temperature radiation detectors due to their high dark resistivity (ρ≈2.8 × 1011 Θ cm), good charge-transport properties [electron and hole mobility-life-time product, μτe≈(2–5)×10−3 and μτh≈(3–5)×10−5 respectively, and low cost of production. Spectroscopic ellipsometry and optical transmission measurements were carried out on the grown CZT crystals using two-modulator generalized ellipsometry (2-MGE). The refractive index n and extinction coefficient k were determined by mathematically eliminating the ∼3-nm surface roughness layer. Nuclear detection measurements on the single-element CZT detectors with 241Am and 137Cs clearly detected 59.6 and 662 keV energies with energy resolution (FWHM) of 2.4 keV (4.0%) and 9.2 keV (1.4%), respectively.  相似文献   

2.
Below gap optical losses in as-grown n-type CdTe crystals were analyzed in terms of free carrier absorption and Mie extinction due to Te precipitates. Experimental absorption spectra measured between 2 to 20 μm exhibited the well-known free carrier absorption behavior αFCA∼λx with x=3 due to scattering by polar optical phonons. In shorter wavelength regions below 6 μm, however, additional contributions to the light loss due to absorption and scattering by precipitates were also observed. Assuming a log-normal size distribution, the precipitate extinction spectra were calculated according to Mie theory within the electric and magnetic dipole and electric quadrupole approximation. A comparison with the experimental spectra identifies the precipitates and enables estimation of their sizes and total number density. In this investigation, both undoped and In-doped CdTe crystals grown from stoichiometric melts by vertical asymmetric Bridgman method were used. It was found that In doping, in general, suppresses Te precipitation. At high doping level (melt containing∼1019 In atoms cm−3), the formation of In2Te2 is also indicated. It is demonstrated that the Mie extinction analysis offers an, expedient method to rapidly analyze the precipitates in CdTe and in similar other wide gap materials in a nondestructive manner.  相似文献   

3.
The current response of a TlBr detector to 137Cs γ-ray radiation has been studied in the dose-rate range 0.033–3.84 Gy/min and within the voltage range 1–300 V; the detectors are based on pure and doped TlBr crystals grown from the melt by the Bridgman-Stockbarger method. The mass fraction of Pb or Ca introduced into the TlBr crystals was 1–10 ppm for Pb and 150 ppm for Ca. The current response of nominally undoped TlBr samples was nearly linear over two decades of studied dose rates. Deep hole levels associated with cationic vacancies V c determine the dependence of the current response on the voltage in the high electric fields. The parameters of the carriers’ transport μτ are determined. The TlBr crystals grown in vacuum and in the bromine vapor exhibit a large mobility-lifetime product of 4.3 × 10−4 and 6.4 × 10−5 cm2V−1, respectively. The value of μτ is in the range (4–9) × 10−5 cm2V−1 for crystals doped with a divalent cation.  相似文献   

4.
High purity CdTe crystals were grown by the vertical unseeded vapor growth technique. The growth charge composition varied between CdTe +0.1 mol% Cd and CdTe + 0.1 mol% Te. At a deviation from stoichiometry of δTe > 0.05 mol% in the charge p-type crystals with an electrical resistivity of 106 Ωcm were obtained, n-type crystals were obtained with charge compositions of δTe < 0.02 mol%, with the resistivity ρ increasing with δTe from 103 to < 109 Ωcm. Maximum resistivity ∿2.109 Ωcm was found when δTe ∿0.02 mol%. In all cases, the crystal composition shows a higher Cd concentration of ∿0.02 mol% relative to the charge, suggesting noncongruent sublimation of CdTe.  相似文献   

5.
Large-area high-quality Hg1–x Cd x Te sensing layers for infrared imaging in the 8 μm to 12 μm spectral region are typically grown on bulk Cd1–x Zn x Te substrates. Alternatively, epitaxial CdTe grown on Si or Ge has been used as a buffer layer for high-quality epitaxial HgCdTe growth. In this paper, x-ray topographs and rocking-curve full-width at half-maximum (FWHM) data will be presented for recent high-quality bulk CdZnTe grown by the vertical gradient freeze (VGF) method, previous bulk CdZnTe grown by the vertical Bridgman technique, epitaxial CdTe buffer layers on Si and Ge, and a HgCdTe layer epitaxially grown on bulk VGF CdZnTe.  相似文献   

6.
This work focuses on the evaluation of the spectroscopic performance of n-type CdZnTe gamma-ray spectrometers, grown by a modified horizontal Bridgman Technique developed at IMARAD Imaging Systems Ltd. Two types of devices are studied: (i) detector arrays grown and produced by IMARAD and employing ohmic indium contacts and (ii) detectors and arrays fabricated at Technion in crystals provided by IMARAD, employing different types of contacts. Alpha particle spectroscopy as well as gamma-ray spectroscopy is used to evaluate and characterize the energy resolution of gamma-ray spectrometers fabricated on n-type CdZnTe grown by a modified horizontal Bridgman and doped with indium. The electron and hole mobility lifetime products of the n-type CdZnTe material grown by IMARAD are estimated by measuring the dependence of charge collection efficiency upon the bias voltage, using a calibrated multichannel analyzer. The measured results indicate that the average electron and hole mobility-lifetime products are, respectively, of the order of μnτn=(1–2)·10−3 cm2/V and μpτp=6·10−6 cm2/V. The measured energy resolution of 122 keV photons is −(5–6)% when the source is not collimated and is reduced to −4.5% when the source is collimated. These results are obtained with ohmic cathode as well as with a rectifying cathode. A statistical model for the calculation of the pulse height spectra as a function of photon energy, electron and hole mobility-lifetime products and applied electric field, which has been recently reported in Applied Physical Letters, is used to determine the role of incomplete charge collection in the spectral performance of the n-type CdZnTe spectrometers. The comparison between the measured and modeled results indicates that the dark noise, cross talk and non-uniformity are the main limiting factors of the spectral performance of the n-type spectrometers rather than incomplete charge collection. The good spectroscopic performance of the arrays under study is attributed to an adequate hole mobility lifetime for the geometry of the pixilated arrays. The study indicates that the n-type CdZnTe spectrometers are useful for a wide range of imaging applications.  相似文献   

7.
Large area, low defect CdTe substrates are essential for high quality epitaxy of HgCdTe in infrared detector applications. Vertical Bridgman (VB) CdTe normally exhibits higher than desired dislocation density and sub-grain structure. A seeded Horizontal Bridgman (HB) technique has been used to grow CdTe single crystals which exhibit superior crystalline qualities when compared to standard VB substrates. The HB grown CdTe crystals were not intentionally doped and had resistivities in the 107 ohm-cm range. The etch pit density (EPD) near the seed and the tail end sections is 5 × 104 cm−2s, while wafers from the middle section of the ingot have EPDs in the 104 cm−2 range. Furthermore, HB EPD patterns indicate the absence of sub-grain boundaries. X-ray rocking curves are very sharp and exhibit FWHMs as low as 9 arc-sec. By comparison, the best samples from standard VB CdTe ingots exhibit x-ray rocking curves with FWHMs in the >30 arc-sec range. The IR transmission of HB material is as high as 57% in the 2.5 to 20 μm region. Results of electrical and optical characterization are presented.  相似文献   

8.
Cd1−x Mn x Te is a typical diluted magnetic semiconductor, as well as substrate for the epitaxial growth of Hg1−x Cd x Te. In this paper, the homogeneity of a Cd1−x Mn x Te (x = 0.2) single-crystal ingot grown by the vertical Bridgman method was studied. The crystal structure and quality of the as-grown ingot were evaluated. Near-infrared (NIR) transmission spectroscopy was adopted to develop a simple optical determination of the Mn concentration in the as-grown ingot. A correlation equation between cut-off wavelength λ co from NIR transmission spectra and Mn concentration by inductively coupled plasma atomic emission spectrometry (ICP-AES) was established. Using this equation, we investigated the Mn concentration distribution in both the axial and radial directions of the ingot. It was found that the segregation coefficient of Mn in the axial direction of the ingot was 0.95, which is close to unity. The Mn concentration variation in the wafers from the middle part of the ingot was 0.001 mole fraction. All these results proved that homogeneous Cd0.8Mn0.2Te crystals can be grown from the vertical Bridgman method.  相似文献   

9.
We have investigated the crystal growth of single-phase MnSi1.75−x by a temperature gradient solution growth (TGSG) method using Ga and Sn as solvents and MnSi1.7 alloy as the solute, and measured the thermoelectric properties of the resulting crystals. Single-phase Mn11Si19 and Mn4Si7 crystals were grown successfully using Ga and Sn as solvents, respectively. The typical size of a grown ingot of Mn11Si19 was 2 mm to 4 mm in thickness and 12 mm in diameter, whereas Mn4Si7 had polyhedral shape with dimensions in the range of several millimeters. The single-phase Mn11Si19 has good electrical conduction (ρ = 0.89 × 10−3 Ω cm to 1.09 × 10−3 Ω cm) compared with melt-grown multiphase higher-manganese silicide (HMS) crystals. The Seebeck coefficient, power factor, and thermal conductivity were 77 μV K−1 to 85 μV K−1, 6.7 μW cm−1 K−2 to 7.2 μW cm−1 K−2, and 0.032 W cm−1 K−1, respectively, at 300 K.  相似文献   

10.
Investigation into resonant-cavity-enhanced (RCE) HgCdTe detectors has revealed a discrepancy in the refractive index of the CdTe layers grown by molecular beam epitaxy (MBE) for the detectors, compared with the reported value for crystalline CdTe. The refractive index of the CdTe grown for RCE detectors was measured using ellipsometry and matches that of CdTe with an inclusion of approximately 10% voids. X-ray measurements confirm that the sample is crystalline and strained to match the lattice spacing of the underlying Hg(1−x)Cd(x)Te, while electron diffraction patterns observed during growth indicate that the CdTe layers exhibit some three-dimensional structure. Secondary ion mass spectroscopy results further indicate that there is enhanced interdiffusion at the interface between Hg(1−x)Cd(x)Te and CdTe when the Hg(1−x)Cd(x)Te is grown on CdTe, suggesting that the defects are nucleated within the CdTe layers.  相似文献   

11.
Studies of charge transport uniformity in bulk CdTe:Cl have been carried out using ion-beam-induced charge (IBIC) imaging. High resolution maps of charge collection efficiency, mobility-lifetime product (μτ), and drift mobility (μ) were measured using a scanning microbeam of 2 MeV protons focused to a beam diameter of ∼3 μm. Excellent charge transport uniformity was observed in single crystal CdTe:Cl, with electron μτ values of up to 5 × 10−3 cm2/V s. The presence of extended defects such as tellurium inclusions was also studied using IBIC, and their influence on the charge transport performance of CdTe detector structures is discussed. The text was submitted by the authors in English.  相似文献   

12.
High-quality (211)B CdTe buffer layers are required during Hg1−x Cd x Te heteroepitaxy on Si substrates. In this study, direct metalorganic vapor-phase epitaxy (MOVPE) of (211)B CdTe on Si, as well as CdTe on Si using intermediate Ge and ZnTe layers, has been achieved. Tertiary butyl arsine was used as a precursor to enable As surfactant action during CdTe MOVPE on Si. The grown CdTe/Si films display a best x-ray diffraction rocking-curve full-width at half-maximum of 64 arc-s and a best Everson etch pit density of 3 × 105 cm−2. These values are the best reported for MOVPE-grown (211)B CdTe/Si and match state-of-the-art material grown using molecular-beam epitaxy.  相似文献   

13.
Electron spin resonance and the Hall effect are investigated in n-Pb1−x SnxTe:Gd crystals grown from melt. It is found that there is no direct correlation between the free electron density and the density of the Gd3+ impurity in these crystals. The conclusion is drawn that the the electron conductivity of Pb1−x SnxTe:Gd crystals is not caused by the Gd impurity but by intrinsic defects of the crystal lattice which have zero activation energy due to the Gd impurities. Fiz. Tekh. Poluprovodn. 32, 1331–1333 (November 1998)  相似文献   

14.
Measurements of the 55Fe-isotope emission spectra and the photosensitivity of CdTe detectors with a Schottky diode, and also the temperature dependence of the resistivity of a CdTe crystal ((2–3) × 109 Ωcm at 300 K) have been used to determine the concentration of uncompensated donors (1–3) × 1012 cm−3. Similar measurements performed for Cd0.9Zn0.1Te crystals with the resistivity (3–5) × 1010 Ω cm at 300 K have shown that the concentration of uncompensated donors in this case is lower by approximately four orders of magnitude. The results of calculations show that, due to such a significant decrease in the concentration of uncompensated donors, the efficiency of X- and γ-ray radiation detection in the photon energy range 59 to 662 keV can decrease by one-three orders of magnitude (depending on the photon energy and the lifetime of charge carriers in the space-charge region). The results obtained account for the apparent poor detecting properties of the Cd0.9Zn0.1Te detectors.  相似文献   

15.
The high-pressure electro-dynamic gradient (HP-EDG) crystal-growth technology has been recently developed and introduced at eV PRODUCTS to grow large-volume, semi-insulating (SI) CdZnTe single crystals for room-temperature x-ray and gamma-ray detector applications. The new HP growth technology significantly improves the downstream CdZnTe device-fabrication yield compared to earlier versions of the HP crystal-growth technology because of the improved structural and charge-transport properties of the CdZnTe ingots. The new state-of-the-art, HP-EDG crystal-growth systems offer exceptional flexibility and thermal and mechanical stability and allow the growth of high-purity CdZnTe ingots. The flexibility of the multi-zone heater system allows the dynamic control of heat flow to optimize the growth-interface shape during crystallization. This flexibility combined with an advanced control system, improved system diagnostics, and realistic heat-transport modeling provides an excellent platform for continuing process development. Initial results on large-diameter (140 mm), SI Cd1−xZnxTe (x=0.1) ingots grown in low temperature gradients with the HP-EDG technique show reduced defect density and complete elimination of ingot cracking. The increased single-crystal yield combined with the improved charge transport allows the fabrication of large-volume, high-sensitivity, high energy-resolution detector devices at increased yield. The CdZnTe ingots grown to date produced large-volume crystals (≥1cm3) with electron mobility-lifetime product (μτe) in the (3–7) × 10−3 cm2/V range. The lower-than-desired charge-transport uniformity of the HP-EDG CdZnTe ingots is associated with the high density of Te inclusions formed in the ingots during crystallization. The latest process-development efforts show a reduction in the Te-inclusion density, an increase of the charge-transport uniformity, and improved energy resolution of the large-volume detectors fabricated from these crystals.  相似文献   

16.
High-quality (211)B CdTe buffer layers on Si substrates are required to enable Hg1–x Cd x Te growth and device fabrication on lattice-mismatched Si substrates. Metalorganic vapor-phase epitaxy (MOVPE) of (211)B CdTe on Si substrates using Ge and ZnTe interlayers has been achieved. Cyclic annealing has been used during growth of thick CdTe layers in order to improve crystal quality. The best (211)B CdTe/Si films grown in this study display a low x-ray diffraction (XRD) rocking-curve full-width at half-maximum (FWHM) of 85 arcsec and etch pit density (EPD) of 2 × 106 cm−2. These values are the best reported for MOVPE-grown (211) CdTe/Si and are comparable to those for state-of-the-art molecular beam epitaxy (MBE)-grown CdTe/Si.  相似文献   

17.
Single crystals of Pb1−x Snx Te (0.06<x<0.08) have been grown by using an ingot-nucleation technique from a Te-rich source. The as-grown crystals have a p-type carrier concentration around 1019 cm−3 and dislocation density as low as 103 cm−2. Diode lasers fabricated from these crystals have contact resistances of 2×10−5 Ω-cm2 and a single-mode single-ended output power of 750 μW at heat sink temperatures around 15 K.  相似文献   

18.
The spectral and kinetic parameters of the X-ray luminescence of ZnSe crystals doped with Zn, Se, and Te were investigated during the growth process at temperatures in the range 80–500 K, and also after annealing in Zn vapor. ZnSe crystals grown from a stoichiometric mixture, or mixture containing chalcogenide impurities, typically produce the minimum level of afterglow and a rapid rise of X-ray luminescence, as well as a shift of its peak from the infrared region toward shorter wavelengths after annealing in zinc. ZnSe crystals grown from material with excess of Zn have a relatively low X-ray luminescence yield and a substantial level of afterglow. It is assumed that the growth of Te-activated crystals is accompanied by the development of thermally stable complexes of the form V ZnTeSe that act as radiative recombination centers. The introduction of excess Zn into the initial mixture produces a reduction in the concentration of V Zn and, hence, in the concentration of radiative recombination centers. It is shown that, for free-electron concentrations n<1018 cm−3, the afterglow time constant τ can be described as a function of n by a model of radiative recombination that involves a single impurity level, whereas for n>1018 cm−3, the time constant decreases with increasing n, which cannot be explained in terms of the simple model. It is suggested that radiative recombination centers of a new type are produced as a result of prolonged annealing in Zn vapor. Fiz. Tekh. Poluprovodn. 31, 1211–1215 (October 1997)  相似文献   

19.
Epitaxial layers of Hg1−xCdx Te were grown on CdTe substrates by the chemical vapor transport technique using Hgl2 as a transport agent. The epilayers were of nearly uniform composition both laterally and to a depth of about one-half of the layer thickness. By comparison, the composition varied continuously throughout the depth of the layer for epilayers grown by the physical vapor transport technique. Layers were grown both p- and n-type with carrier concentrations on the order of 1017 cm−3. Low-temperature annealing was used to convert the p-type layers into n-type. The room-temperature carrier mobilities of as-grown and converted n-type layers ranged from 103 to 104 cm2/V-s depending on the composition and are comparable to previous literature values for undoped Hg1−xCdxTe crystals.  相似文献   

20.
Effects of excess tellurium on the properties of CdZnTe radiation detectors   总被引:2,自引:0,他引:2  
Room-temperature radiation detectors have been fabricated on high-resistivity, indium-doped Cd0.90Zn0.10Te crystals grown under different amounts of excess Te. The effects of the excess Te on the properties of the detectors are explained by a simple model using only three parameters: the density of Cd vacancies, the density of Te antisites (Te at Cd sites), and the deep level of doubly ionized Te antisites. The best detectors, which can resolve the low-energy Np-L and Te-K peaks as well as Cd and Te escape peaks of 241Am, are produced from crystals grown with 1.5% excess Te. The detectors fabricated from crystals grown without excess Te are unable to resolve any characteristic-radiation peaks of 241Am and 57Co. This result is explained by a model of networked p-type domains in an n-type matrix or vice versa, which is caused by the lack of sufficient deep-level Te antisites. Such conduction-type inhomogeneity causes massive electron and hole trapping. As for the detectors fabricated from Cd0.90Zn0.10Te crystals grown with 2% and 3% excess Te, they are able to resolve the 241Am 59.5-keV, 57Co 122-keV, and 57Co 136-keV radiation peaks. However, the full-width at half-maximum (FWHM) values of these peaks are broadened, especially the high-energy 57Co peaks. These phenomena are attributed to the hole and, possibly, electron trapping by Cd vacancies and Te antisites, respectively. The result of the analysis indicates that sufficient Te antisites and a low density of carrier traps in Cd0.90Zn0.10Te are essential for producing high-quality radiation detectors. In the analysis, it was discovered that most of the excess Te, on the order of 1–2 × 1020 cm−3, remain electrically inactive. A possible explanation for this phenomenon is that the excess Te atoms form neutral Te-antisite and Cd-vacancy complexes, such as TeCd·(VCd)2, during the post-growth cooling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号