首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Ball grid array (BGA) packages have been characterized from one port S-parameter measurements by shorting and opening the connection on the ball side of BGA packages. Transmission line parameters (resistance, inductance and capacitance) using the Γ equivalent circuit model are extracted from the measured S11 parameter. Extracted resistances are strongly dependent on frequency, but extracted inductances and capacitances are nearly constant up to 500 MHz. Extracted capacitances are well matched to those measured from an LCR meter and calculated from a three-dimensional (3-D) simulator, Capacitance in a transmission line plays an important role in electrical performance for packages so that we may model a transmission line as a single capacitor. Extracted capacitances using the single capacitor model also well represent the measured S11. These results suggest that the single capacitor model can be efficiently used for the transmission line model in BGA packages up to 500 MHz  相似文献   

2.
In this paper, we introduce the microwave transmission characteristics of interconnection lines on a wafer level package (WLP) and also propose a precise microwave-frequency model of the WLP interconnections. The slow wave factor (SWF) and attenuation constant are measured and discussed. High-frequency measurement is described, based on two-port S-parameter measurements, using an on-wafer microwave probe with a frequency range of up to 5 GHz. The extracted model is represented in the form of distributed lumped circuit model elements and can be easily merged into SPICE simulations. From the extracted model, it was found that line capacitance and inductance per unit length are 0.110 pF/mm and 0.286 nH/mm, respectively. We have successfully applied the extracted model to the design and analysis of a Rambus memory module for time domain simulation and signal integrity simulation. From the simulation, it was found that the WLP has better high-frequency performance, because of its low package inductance, compared with the /spl mu/BGA package, but longer propagation delay, because of the relatively high package capacitance.  相似文献   

3.
A limiting amplifier IC implemented in a silicon-germanium (SiGe) heterojunction bipolar transistor technology for low-cost 10-Gb/s applications is described. The IC employs 20 dB gain limiting cells, input overload protection, split analog-digital grounds, and on-chip isolation interface with transmission lines. A gain enhancement technique has been developed for a parallel-feedback limiting cell. The limiting amplifier sensitivity is less than 3.5 mVpp at BER=10-9 with 2-Vpp maximum input (55-dB dynamic range). The total gain is over 60 dB, and S21 bandwidth exceeds 15 GHz at 10-mVpp input. Parameters S11 and S22 are better than -10 dB in the 10-GHz frequency range. The AM to PM conversion is less than 5 ps across input dynamic range. The output differential voltage can be set from 0.2 to 2 Vpp with IC power dissipation from 250 mW to 1.1 W. The chip area is 1.2×2.6 mm2. A 10-Gb/s optical receiver, built with the packaged limiting amplifier, demonstrated -19.6-dBm sensitivity. The IC can be used in 10-Gb/s fiber-optic receivers requiring high sensitivity and wide input dynamic range  相似文献   

4.
We have developed 40-Gb/s traveling-wave electroabsorption-modulator-integrated distributed feedback laser (TW-EML) modules using several advanced technologies. First, we have adopted a selective area growth (SAG) method in the fabrication of the 40-Gb/s EML device to provide active layers for the laser and the electroabsorption modulators (EAMs) simultaneously. The fabricated device shows that the measured 3-dB bandwidth of electrical-to-optical (E/O) response reaches about 45 GHz and the return loss (S11) is kept below -10 dB up to 50 GHz. For the module design of the device, we mainly considered electrical and optical factors. The measured S11 of the fabricated 40 Gb/s TW-EML module is below -10 dB up to about 30 GHz and the 3-dB bandwidth of the E/O response reaches over 35 GHz. We also have developed two types of coplanar waveguide (CPW) for the application of the driver amplifier integrated 40 Gb/s TW-EML module, which is a system-on-package (SoP) composed of an EML device and a driver amplifier device in a module. The measured S11 of the two-step-bent CPW is below -10 dB up to 35 GHz and the measured S11 of the parallel type CPW is below -10 dB up to 39 GHz.  相似文献   

5.
This work presents a Ka-band two-way 3 dB Wilkinson power divider using synthetic quasi-transverse electromagnetic (TEM) transmission lines (TLs). The synthetic quasi-TEM TL, also called complementary-conducting-strip TL (CCS TL), is theoretically analyzed. The equivalent TL model, whose production is based on the extracted results, is applied to the power divider design. The prototype is fabricated by the standard 0.18 mum 1P6M CMOS technology, showing the circuit size of 210.0 mumtimes390.0 mum without contact pads. The measurement results, which match the 50 Omega system, reveal perfect agreements with those of the simulations. The comparison reveals the following characteristics. The divider exhibits an equal power-split with the insertion losses (S21 and S31) of 3.65 dB. The return losses (S11, S22 and S33) of the prototype are higher than 10.0 dB from 30.0 to 40.0 GHz.  相似文献   

6.
A 3.1-10.6 GHz ultra-wideband low-noise amplifier (UWB LNA) with excellent phase linearity property (group-delay variation is only plusmn 16.7 ps across the whole band) using standard 0.13 mum CMOS technology is reported. To achieve high and flat gain and small group-delay variation at the same time, the inductive peaking technique is adopted in the output stage for bandwidth enhancement. The UWB LNA achieved input return loss (S11) of -17.5 to -33.6 dB, output return loss (S22) of -14.4 to -16.3 dB, flat forward gain (S22) of 7.92 plusmn 0.23 dB, and reverse isolation (S12) of -25.8 to -41.9 dB over the 3.1-10.6 GHz band of interest. A state-of-the-art noise figure (NF) of 2.5 dB was achieved at 10.5 GHz.  相似文献   

7.
This paper presents a neural network-based technique for modeling and analyzing the electrical performance of flip-chip transitions. A lumped element model using a simple pi equivalent circuit is used to characterize the electrical properties of the flip-chip bond. Statistical experimental design is used to extract the electrical parameters for flip-chip characterization from measurements and full-wave simulations up to 35 GHz. The extracted data is used to train back-propagation neural networks to obtain an accurate model of the pi equivalent circuit components and s-parameters as a function of layout parameters. The prediction error of the models is less than 5%. The models are used to obtain response surfaces for the entire range of variation of layout parameters. The neural network models are subsequently used to perform sensitivity analysis. All electrical parameters are shown to be sensitive to conductor overlap. The inductance and capacitance of the pi equivalent circuit are sensitive to the bump height. However, the return loss (S11) is insensitive to the change in bump height. The coplanar waveguide width has a significant impact on the s-parameters, as it affects the matching of flip-chip transitions  相似文献   

8.
《Electronics letters》2008,44(17):1014-1016
A 21-27 GHz CMOS ultra-wideband low-noise amplifier (UWB LNA) with state-of-the-art phase linearity property (group delay variation is only ± 8.1 ps across the whole band) is reported for the first time. To achieve high and flat gain (S21) and small group delay variation at the same time, the inductive series peaking technique was adopted in the output of each stage for bandwidth enhancement. The LNA dissipated 27 mW power and achieved input return loss (S11) of 213 to 220.1 dB, output return loss (S22) of 28.2 to 230.2 dB, flat S21 of 9.3 ± 1.3 dB, reverse isolation (S12) of 252.7 to 273.3 dB, and noise figure of 4.9?6.1 dB over the 21-27 GHz band of interest. The measured 1 dB compression point (P1dB) and input third-order intermodulation point (IIP3) were 214 and 24 dBm, respectively, at 24 GHz.  相似文献   

9.
A technique for simultaneously measuring the real and imaginary parts of both the permittivity and the permeability of a given material is discussed. A gap in a coaxial line is filled with the material under test. Complex permittivity and permeability are computed from the S-parameter (S11 and S21) measurement made on the gap, taking into account higher-order modes excited at the discontinuity. Measured ϵr and μr data for several materials are presented from 45 MHz up to 18 GHz. This technique shows good agreement between calculated and generally accepted values  相似文献   

10.
A Compact, ESD-Protected, SiGe BiCMOS LNA for Ultra-Wideband Applications   总被引:1,自引:0,他引:1  
Two 3.65-mW, ESD-protected, BiCMOS ultra-wideband low-noise amplifiers (LNAs) for operation up to 10 GHz are presented. These common-base LNAs achieve significant savings in die area over more widely used cascoded common-emitter LNAs because they do not use an LC input matching network. A design with a shunt peaked load achieves a high S21 (17-19 dB) and low noise figure (NF) (4-5 dB) across the band. A resistively loaded design exhibits a lower S21 (15-16 dB) and higher NF (4.5-6 dB), but also utilizes 20% less silicon area. Both LNAs achieve a 1.5 kV ESD protection level and an acceptable S11 (<-10 dB) across the band. Current source noise reduction is critical in common base topologies. Therefore, detailed noise analyses of MOS- and HBT-based current sources are provided  相似文献   

11.
In this paper, we demonstrate an SiGe HBT ultra-wideband (UWB) low-noise amplifier (LNA), achieved by a newly proposed methodology, which takes advantage of the Miller effect for UWB input impedance matching and the inductive shunt-shunt feedback technique for bandwidth extension by pole-zero cancellation. The SiGe UWB LNA dissipates 25.8-mW power and achieves S11 below -10 dB for frequencies from 3 to 14 GHz (except for a small range from 10 to 11 GHz, which is below -9 dB), flat S21 of 24.6 plusmn 1.5 dB for frequencies from 3 to 11.6 GHz, noise figure of 2.5 and 5.8 dB at 3 and 10 GHz, respectively, and good phase linearity property (group-delay variation is only plusmn28 ps across the entire band). The measured 1-dB compression point (P1 dB) and input third-order intermodulation point are -25.5 and -17 dBm, respectively, at 5.4 GHz.  相似文献   

12.
一种小型化超宽带MIMO天线设计   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种基于槽天线的小型化、高隔离度的超宽带(Ultra Wideband, UWB)多入多出(Multiple-Input Multiple-Output, MIMO)天线.该MIMO天线由两个槽天线单元构成, 为了增加天线阻抗带宽, 每个槽天线单元由末端带有圆形贴片的微带线和末端为圆形的槽线两部分耦合馈电.采用在地板上开槽和方向图分集方法, 减少地板表面波和空中电磁波影响, 达到提高天线隔离度的目的.数值仿真和实验结果表明:该天线在3.1~11 GHz频段内满足端口反射系数|S11| < -10 dB, 隔离度|S12|在7~11 GHz频段内小于-25 dB, 在3.1~7 GHz频段内小于-16 dB, 并根据仿真和测试S参数计算了包络相关系数.  相似文献   

13.
One compact slow-wave microstrip branch-line coupler is presented. The new structure not only effectively reduces the occupied area to 28% of the conventional branch-line coupler at 2.0 GHz, but also has high second harmonic suppression performance. The measured results indicate a bandwidth of more than 200 MHz has been achieved while the phase difference between S21 and S31 is within 90deg plusmn 1deg. Furthermore, the measured insertion loss is comparable to that of a conventional branch-line coupler. The new coupler can be easily implemented by using the standard printed-circuit-board etching processes and is very useful for wireless communication systems.  相似文献   

14.
A new structure of integrated planar metal magnetic film coupled line (MMFCL) circulators is presented, in which a metal magnetic film is used instead of ferrite materials. Simulation was performed with HFSS based on coupled-mode theory. An insertion loss of 4 dB and isolation of -13.5 dB between S21 and S12 over a frequency band of 3 GHz (from 36.5 to 39.5 GHz) were realised for a three-port MMFCL circulator  相似文献   

15.
We report on a technique for extracting an accurate value of the nonlinear inductance in superconducting transmission lines. This novel technique assesses the frequency dependence of the transmission line's nonlinear response. A wideband nonlinear measurement system was used to simultaneously measure the third-order spurious signals at 2f1 - f2, 2f2 - f1 + f2, 2f2 + f1, 3f1, and 3f2 frequencies. Measurements for different values of the fundamental frequencies f1 and f2 allow us to study the spurious signal generation from 1 to 21 GHz. We demonstrate this technique by measuring several superconducting YBa2Cu3O7-x coplanar waveguide transmission line geometries patterned in a single chip at 80 K. The results show a linear frequency dependence of the nonlinear response, indicating a dominant contribution of the nonlinear inductance over the nonlinear resistance omegaDeltaL(i) Gt DeltaR(i). The experimentally obtained nonlinear inductances are then used to determine device-independent measures of the linearity of the thin-film material in order to provide the foundation for modeling the nonlinear response of specific devices.  相似文献   

16.
An InP-based integrated HBT amplifier with PNP active load was demonstrated for the first time using complementary HBT technology (CRBT). Selective molecular beam epitaxy (MBE) regrowth was employed and a merged processing technology was developed for the monolithic integration of InP-based NPN and PNP HBTs on the same chip. The availability of PNP devices allowed design of high gain amplifiers with low power supply voltage. The measured amplifier with PNP HBT active load achieved a voltage gain of 100 with a power supply (VCC) of 1.5 V. The corresponding voltage swing was 0.9 V to 0.2 V. The amplifier also demonstrated S21 of 7.8 dB with an associated S11 and S22 of -9.5 dB and -8.1 dB, respectively, at 10 GHz  相似文献   

17.
A novel two-beam scanning active leaky-wave antenna   总被引:2,自引:0,他引:2  
A novel two-beam scanning active leaky-wave antenna (LWA) has been developed. This LWA with a two-terminal feeding microstrip line structure is integrated with a varactor-tuned X-band high-electron mobility transistor (HEMT) voltage-controlled oscillator (VCO). The signal of the VCO is injected via a T-divider into the radiating element. To excite the first higher order mode, the designed antenna is fed asymmetrically at both ends of the microstrip line. Compared with single-terminal feeding leaky-wave antennas, this configuration offers the advantages of dual-direction and suppression of the reflected wave caused by the open end of the radiating element. The scanning angle is steered over a range of 24-46° for the right beam and 128-150° for the left beam. The effective isotropic radiated power (EIRP) is calculated to be 17.5 and 16.67 dBm at 10.4 GHz, respectively. The measured return loss S11 is less than -10 dB in the range of 9-11.5 GHz. The transmission coefficient S21 indicates that the power radiates into the space  相似文献   

18.
A dielectric resonator antenna formed by a U-shaped dielectric resonator and a conformal elliptical patch feed is proposed for wideband communication applications. Simulated results agree well with measured ones, showing good performance in terms of bandwidth and radiation patterns. The measured impedance bandwidth of S11 < -10 dB is about 72%, covering the frequency range 3.82-8.12 GHz. It has a gain of 4.3-7.6 dBi over the whole operating band with a ground size of about 1.2 lambda0 times 1.2 lambda0, lambda0 being the central operating frequency.  相似文献   

19.
In this brief, the design of a low-power inductorless wideband low-noise amplifier (LNA) for worldwide interoperability for microwave access covering the frequency range from 0.1 to 3.8 GHz using 0.13-mum CMOS is described. The core consumes 1.9 mW from a 1.2-V supply. The chip performance achieves S11 below -10 dB across the entire band and a minimum noise figure of 2.55 dB. The simulated third-order input intercept point is -2.7 dBm. The voltage gain reaches a peak of 11.2 dB in-band with an upper 3-dB frequency of 3.8 GHz, which can be extended to reach 6.2 GHz using shunt inductive peaking. A figure of merit is devised to compare the proposed designs to recently published wideband CMOS LNAs  相似文献   

20.
Scattering matrix approach for the design of microwave filters   总被引:1,自引:0,他引:1  
A synthesis procedure, based on a distributed parameter model, for the design of microwave filters is presented in this paper. The frequency response of the filter is described in terms of the characteristic polynomial T21=S11/S21 where S11 and S21 are the scattering parameters of the filter. Starting from the desired polynomial T21, the design scheme directly yields the scattering parameters of the various junctions, which can be realized by any kind of discontinuity. The capability of synthesizing an arbitrary frequency response allows one to introduce the concept of a “predistorted” characteristic polynomial in order to compensate for the degradations caused by multimodal interactions, frequency dispersion, etc. Comparison with measured data of a Chebyshev-like eight-pole E-plane filter confirms the validity of the method also in the presence of losses  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号