首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Mathematical tools for studying panicle transpon in rotary drying and cooling processes are developed in this paper. In contrast to conventional approaches aimed at deriving empirical or xmi-empirical correlations, a rigorous mathematical analysis which employs dilferential calculus and analytical geometry is emphasis4 in the current research. These developments allow accurale computations of solid flowrate, retention time and particle holdup in rotary dryers with arbilrary flight configurations. Consequently, optimal dryer configuration design in terms of drum dimension, flight number and geometry can be achieved through a better understanding of the mathematical insight of rotary drum performance.

Techniques developed using this method are applied to the distributed parameter model eslablished earlier by the authors (Wang el al., 1993) to replace out-dated correlations for the determination of retention Lime and solid holdup. As a result of the new developments, the distributed parameter approach to the dynamics of rotary drying processes becomes more general and more reliable.  相似文献   

2.
A model for particle transport in a flighted horizontal rotary dryer is developed in this paper. Mathematical principles applied to the current study are in the areas of differential calculus and analytical geomentry. In contrast to the conventional approaches which are either based on mpirical/semi-empirical correlations or obtained from the investieation of single particle trajectories, this paper develops rigorous mathematical analysis of the transport of bulk solids. A variety of important issues in rotary drying, such as axial flowrate of solids, retention time distribution and solid holdup are addressed and treated by using non-traditional methods. Since the model takes dimension, number and geometry of flights into account, it possesses the following two haracteristics : (1) it is not only useful in the study of rotary drying dynamics, but lso applicable to other processes employing flighted rotating cylinders (such as granulation drumsand crushers) and (2) based on the model, an optimal drum configuration can be designed by using optimisation techniques. The model can be incorporated within a distributed arameter dryer model developed previously to form a more rigorous integrated dynamic model. A heoretical foundation for optimal flight design by using the current model is explained.

A pilot scale perspex rotary dryer equipped with a video camera has been constructed and used for model validation. Raw sugar was handled in the experiments. Particle transport was observed and measured by using a flow visualisation technique supplemented with traditional sampling methods. A significant model quality improvement has been observed through a comparative study between the newly developed model and conventional ones.  相似文献   

3.
ABSTRACT

A model for particle transport in a flighted horizontal rotary dryer is developed in this paper. Mathematical principles applied to the current study are in the areas of differential calculus and analytical geomentry. In contrast to the conventional approaches which are either based on mpirical/semi-empirical correlations or obtained from the investieation of single particle trajectories, this paper develops rigorous mathematical analysis of the transport of bulk solids. A variety of important issues in rotary drying, such as axial flowrate of solids, retention time distribution and solid holdup are addressed and treated by using non-traditional methods. Since the model takes dimension, number and geometry of flights into account, it possesses the following two haracteristics : (1) it is not only useful in the study of rotary drying dynamics, but lso applicable to other processes employing flighted rotating cylinders (such as granulation drumsand crushers) and (2) based on the model, an optimal drum configuration can be designed by using optimisation techniques. The model can be incorporated within a distributed arameter dryer model developed previously to form a more rigorous integrated dynamic model. A heoretical foundation for optimal flight design by using the current model is explained.

A pilot scale perspex rotary dryer equipped with a video camera has been constructed and used for model validation. Raw sugar was handled in the experiments. Particle transport was observed and measured by using a flow visualisation technique supplemented with traditional sampling methods. A significant model quality improvement has been observed through a comparative study between the newly developed model and conventional ones.  相似文献   

4.
The retention time of solids in a drum is an important parameter for the design of rotary dryers, since it directly influences the mass and heat transfer rates. If it is too short, the wood particles do not become adequately dried. If it is too long, they become over-dried. Therefore, having an appropriate retention time is useful in terms of both energy and plant capacity. Wood particle mean retention time in a rotary dryer is affected by several variables, such as dryer dimensions, solid characteristics, and operational parameters. The purpose of this work was to simulate the effects of some wood particle characteristics and operational parameters on the mean retention time, drum holdup, and velocity of the wood particles during drying in a pilot-scale, closed-loop, triple-pass rotary dryer by means of a computer code. The simulation results of wood particle motion can be used for modeling, design, and optimization of closed-loop, triple-pass rotary dryers.  相似文献   

5.
A SIMPLE DYNAMIC MODEL FOR SOLID TRANSPORT IN ROTARY DRYERS   总被引:1,自引:0,他引:1  
The solid particle movement in a rotary drum plays an important role in drying processes. The solid distribution in the drum affects the amount of contact surface between the solid and the gas. The retention time of solids influences the time particles can stay in contact with the gas in order to transfer heat and mass. Any heat and mass transfer model for a solid particle dryer must be able to predict solid flowrate and solid hold-up. There have been several reports in the literature regarding the modelling aspects of solid transport in dryers. If the model is developed for model-based control, it must be simple and yet represent dynamics of the system accurately. This paper addresses solid motion modelling and the effects of different variables involved in solid transport phenomena. Sugar drying process is the case study in this work. A steady state semi-empirical model was modified to predict solid hold-up and flowrate in rotary dryers. This model was incorporated into a heat and mass transfer model ;o predict solid moisture and temperature for inferential and model-based control purposes. Results of several experiments that have been used to investigate dynamics of the system in terms of solid motion and to validate the model are also presented. The approach advocated in this paper is directly applicable to the transport of other solids in rotary drum equipment and can thus be regarded as a generalized model.  相似文献   

6.
ABSTRACT

The solid particle movement in a rotary drum plays an important role in drying processes. The solid distribution in the drum affects the amount of contact surface between the solid and the gas. The retention time of solids influences the time particles can stay in contact with the gas in order to transfer heat and mass. Any heat and mass transfer model for a solid particle dryer must be able to predict solid flowrate and solid hold-up. There have been several reports in the literature regarding the modelling aspects of solid transport in dryers. If the model is developed for model-based control, it must be simple and yet represent dynamics of the system accurately. This paper addresses solid motion modelling and the effects of different variables involved in solid transport phenomena. Sugar drying process is the case study in this work. A steady state semi-empirical model was modified to predict solid hold-up and flowrate in rotary dryers. This model was incorporated into a heat and mass transfer model ;o predict solid moisture and temperature for inferential and model-based control purposes. Results of several experiments that have been used to investigate dynamics of the system in terms of solid motion and to validate the model are also presented. The approach advocated in this paper is directly applicable to the transport of other solids in rotary drum equipment and can thus be regarded as a generalized model.  相似文献   

7.
A nonequilibrium distributed parameter model for rotary drying and cooling processes described by a set of partial differitial equations with nonlinear algebraic constraints is developed in this work. These equations arise from the multi-phase heat and mass balances on a typical rotary dryer. A computational algorithm is devekped by employing a polynonial approximation ( orthogonal collocation) with a glotal splinc technique leading to a differential-algebraic equation ( DAE) system. The numerical solution is carried out by using a standard DAE solver.

The two- phase-flow heat transfer coelficient is computed by introducing a correction factor to the commonly accepted correlations. Since interaction between the falling particles are considered in the correction factor,the results are more reliable than those computed by assuming that heat transfer between a single falling particle and the drying air is unaffected by other particles. The heat transfer computations can be further justified via a study on the analogies between heat and mass transfer.

The general model devloped in this work is mathematically more ritorous yet more flexible that the lumped parameter models established by one of the authors (Douglas et al., (1993)). The three major assumptions of an equilibrium operation, perfect mixing and constant drying raic, are removed in the distributed parameter model.

The simulation results are compared with the operational data from an industrial sugar dryer and predictions from earlier models. The model and algorithm successfully predict the steady state behaviour of rotary dryers and collers. The generalized model can be applied to fertilizer drying processes in which the assumption of constant drying rate is no longer valid and the existing dynamic models are not applicable.  相似文献   

8.
FLIGHT DESIGN I N ROTARY DRYERS   总被引:1,自引:0,他引:1  
The effectiveness of the rotary drum drying process depends primarily on the contact between the cascading particles and the drying gases within the drum. This paper considers first the factors which contribute to the cascade pattern and which influence the design of the lifting flights which distribute the particles in the top half of the drum. A generalised calculation design procedure for flights is developed and described in detail for the case of Equal Horizontal Distribution (EHD) flights. It is reasoned that the EHD flights, which have an equal distribution of particles across the horizontal diameter of the rotary drum dryer, give the optimum distribution in the context of the heat and mass transfer operations of the rotary drying process. An industrial design which approximates the optimum flight design is suggested.  相似文献   

9.
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to replace the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.  相似文献   

10.
《Drying Technology》2013,31(9):2103-2129
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to replace the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.  相似文献   

11.
ABSTRACT

A nonequilibrium distributed parameter model for rotary drying and cooling processes described by a set of partial differitial equations with nonlinear algebraic constraints is developed in this work. These equations arise from the multi–phase heat and mass balances on a typical rotary dryer. A computational algorithm is devekped by employing a polynonial approximation ( orthogonal collocation) with a glotal splinc technique leading to a differential–algebraic equation ( DAE) system. The numerical solution is carried out by using a standard DAE solver.

The two– phase–flow heat transfer coelficient is computed by introducing a correction factor to the commonly accepted correlations. Since interaction between the falling particles are considered in the correction factor,the results are more reliable than those computed by assuming that heat transfer between a single falling particle and the drying air is unaffected by other particles. The heat transfer computations can be further justified via a study on the analogies between heat and mass transfer.

The general model devloped in this work is mathematically more ritorous yet more flexible that the lumped parameter models established by one of the authors (Douglas et al., (1993)). The three major assumptions of an equilibrium operation, perfect mixing and constant drying raic, are removed in the distributed parameter model.

The simulation results are compared with the operational data from an industrial sugar dryer and predictions from earlier models. The model and algorithm successfully predict the steady state behaviour of rotary dryers and collers. The generalized model can be applied to fertilizer drying processes in which the assumption of constant drying rate is no longer valid and the existing dynamic models are not applicable.  相似文献   

12.
ABSTRACT

The effectiveness of the rotary drum drying process depends primarily on the contact between the cascading particles and the drying gases within the drum. This paper considers first the factors which contribute to the cascade pattern and which influence the design of the lifting flights which distribute the particles in the top half of the drum. A generalised calculation design procedure for flights is developed and described in detail for the case of Equal Horizontal Distribution (EHD) flights. It is reasoned that the EHD flights, which have an equal distribution of particles across the horizontal diameter of the rotary drum dryer, give the optimum distribution in the context of the heat and mass transfer operations of the rotary drying process. An industrial design which approximates the optimum flight design is suggested.  相似文献   

13.
In designing cascading rotary dryers, it is important to size the flights correctly in order to ensure that they can adequately accommodate the contents of the drum. A set of equations has been derived to calculate the solids holdup on angular and extended-circular flights in such dryers. Three examples of the practical use of these equations are presented. These include estimation of the design holdup of the dryer, selection of the number of flights, and exploration of the flight cascade characteristics.  相似文献   

14.
THE DESIGN OF FLIGHTS IN CASCADING ROTARY DRYERS   总被引:3,自引:0,他引:3  
In designing cascading rotary dryers, it is important to size the flights correctly in order to ensure that they can adequately accommodate the contents of the drum. A set of equations has been derived to calculate the solids holdup on angular and extended-circular flights in such dryers. Three examples of the practical use of these equations are presented. These include estimation of the design holdup of the dryer, selection of the number of flights, and exploration of the flight cascade characteristics.  相似文献   

15.
The following paper outlines the development of empirically fitted and pseudo-physically derived compartment models of a flighted rotary dryer with counter current airflow processing solid material. Underloaded, overloaded and design-loaded dryers are considered. Four key parameters are estimated to fit the empirical model to industrial residence time distribution data and common empirical mean residence time/holdup correlations. Utilising the fundamental structure of the empirical model and physical and mechanical properties such as the dryer and flight geometry as well as solids material properties, the number of estimated parameters in the pseudo-physical model was reduced to 2. The experimental data required to characterise and validate the models is discussed. Optimisations to determine the model parameters were undertaken by comparison with an experimental residence time distribution curve for an industrial dryer processing sugar. Simulation of the model using gPROMS® illustrates model performance. The potential to integrate the solids transport model and a full heat and mass transfer model is also discussed.  相似文献   

16.
Closed-loop drying systems are an attractive alternative to conventional drying systems because they provide a wide range of potential advantages. Consequently, type of drying process is attracting increased interest. Rotary drying of wood particles can be assumed as an incorporated process involving fluid–solid interactions and simultaneous heat and mass transfer within and between the particles. Understanding these mechanisms during rotary drying processes may result in determination of the optimum drying parameters and improved dryer design. In this study, due to the complexity and nonlinearity of the momentum, heat, and mass transfer equations, a computerized mathematical model of a closed-loop triple-pass concurrent rotary dryer was developed to simulate the drying behavior of poplar wood particles within the dryer drums. Wood particle moisture content and temperature, drying air temperature, and drying air humidity ratio along the drums lengths can be simulated using this model. The model presented in this work has been shown to successfully predict the steady-state behavior of a concurrent rotary dryer and can be used to analyze the effects of various drying process parameters on the performance of the closed-loop triple-pass rotary dryer to determine the optimum drying parameters. The model was also used to simulate the performance of industrial closed-loop rotary dryers under various operating conditions.  相似文献   

17.
A rotating drum with lifting flights is an important piece of industrial equipment used to contact granular solids with a gas stream. Applications include the drying of materials such as wood chips, coal, grain, and metallurgical ores, the cooling of fertilizer pellets and more recently the combustion of coked oil sand. A new mathematical model for a rotating drum with lifting flights that predicts the residence time of particles is proposed. Particle motion is considered in both the airborne phase and the dense phase. Moreover, the holdup and the axial flow rate of particles in the two phases are determined separately. Overall, the model is more flexible than previous models. The drum may be inclined or horizontal with cocurrent or countercurrent flow, may have any type of lifting flights and may be underloaded or overloaded.  相似文献   

18.
This article presents an inaoduction to the various drying processes operational in the ceramic processing industry, with special emphasis on electro ceramics. An attempt is made to arouse the interest of drying specialists in fields other than ceramics to participate in a concentrated group effort to solve a number of existing problems related to ceramics drying. The importance of materials education is highlighted by referring to a few examples depicting the effect of the drying process on the final product quality. It is argued that with more research, conventional processes like spray drying, rotary drum drying, etc. can be improved or replaced with alternative processes like freeze drying, microwave drying, infrared drying and vibrated fluidized bed drying.  相似文献   

19.
A mathematical model able to predict solid and drying gas temperature and moisture content axial profiles along a direct contact rotary dryer was developed. The study was focused on the drying kinetics based on phenomenological models. Two different drying mechanisms in the decreasing drying rate period were tested: proponional to the unbound moisture content and moisture diffusion inside the particle. Experimental data collected in a pilot-scale direct contact rotary dryer was used to validate the model. Soya and fish meals were used as drying material.  相似文献   

20.
An overall system model for a countercurrent rotary dryer has been developed with the ullimale aim of assessing controller pairings in these dryers. This model is based on heat and mass balances within dryer regions combined with two subsidiary models, one describing the equipment (which determines particle transport and heat transfer)and the other describing the behaviour of the material (the drying kinetics). Six partial differential equations have been set up to evaluate six state variables: solids moisture content, solids temperature, gas humidity, gas temperature, solids holdup and gas holdup as functions of time and rotary dryer length. A control-volume method has been used to reduce the six partial differential equations with respect to time and the length of the rotary dryer to six ordinary differential equations in time.

The drying model has been implemented in the SPEEDUP flowsheeting package (with FORTRAN subroutines) The model has been validated by fifteen experiments-in a pilot scale countercurrent-flow rotary dryer (0.2m in diameter and 2m in length)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号