首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
This communication presents results of our 2-year survey on groundwater arsenic contamination in three districts Ballia, Varanasi and Gazipur of Uttar Pradesh (UP) in the upper and middle Ganga plain, India. Analyses of 4,780 tubewell water samples revealed that arsenic concentrations in 46.5% exceeded 10 microg/L, in 26.7%, 50 microg/L and in 10% 300 microg/L limits. Arsenic concentrations up to 3,192 microg//L were observed. The age of tubewells (n=1,881) ranged from less than a year to 32 years, with an average of 6.5 years. Our study shows that older tubewells had a greater chance of contamination. Depth of tubewells (n=3,810) varied from 6 to 60.5 m with a mean of 25.75 m. A detailed study in three administrative units within Ballia district, i.e. block, Gram Panchayet, and village was carried out to assess the magnitude of the contamination. Before our survey the affected villagers were not aware that they were suffering from arsenical toxicity through contaminated drinking water. A preliminary clinical examination in 11 affected villages (10 from Ballia and 1 from Gazipur district) revealed typical arsenical skin lesions ranging from melanosis, keratosis to Bowens (suspected). Out of 989 villagers (691 adults, and 298 children) screened, 137 (19.8%) of the adults and 17 (5.7%) of the children were diagnosed to have typical arsenical skin lesions. Arsenical neuropathy and adverse obstetric outcome were also observed, indicating severity of exposure. The range of arsenic concentrations in hair, nail and urine was 137-10,900, 764-19,700 microg/kg, and 23-4,030 microg/L, respectively. The urine, hair and nail concentrations of arsenic correlated significantly (r=0.76, 0.61, and 0.55, respectively) with drinking water arsenic concentrations. The similarity to previous studies on arsenic contamination in West Bengal, Bihar and Bangladesh indicates that people from a significant part of the surveyed areas in UP are suffering and this will spread unless drives to raise awareness of arsenic toxicity are undertaken and an arsenic safe water supply is immediately introduced.  相似文献   

2.
Prevalence of skin lesions was investigated among 752 participants in eight villages in Kurdistan province in Iran with emphasis on total lifetime intake of arsenic from drinking water (TLIA). The participants were selected from eight villages with different exposure levels using a cluster-sampling technique. TLIA was calculated for each individual taking into account the type of water supply and their mean annual arsenic concentration. The study showed that 49 persons (6.5%) were suffering from hyperkeratosis and 20 persons (2.7%) from hyperpigmentation. The correlation between hyperkeratosis and hyperpigmentation was significant (R=0.325, p<0.01). Using the logistic regression model it was found that the relationship between TLIA and hyperkeratosis (OR=1.14, 95% CI=1.039-1.249), and hyperpigmentation (OR=1.254, 95% CI=1.112-1.416) was also significant. In conclusion, TLIA can be applied as a reliable indicator for the assessment of exposure.  相似文献   

3.
To better understand the magnitude of arsenic contamination in groundwater and its effects on human beings, a detailed study was carried out in Jalangi, one of the 85 arsenic affected blocks in West Bengal, India. Jalangi block is approximately 122 km2 in size and has a population of 215538. Of the 1916 water samples analyzed (about 31% of the total hand tubewells) from the Jalangi block, 77.8% were found to have arsenic above 10 microg l(-1) [the World Health Organization (WHO)-recommended level of arsenic in drinking water], 51% had arsenic above 50 microg l(-1) (the Indian standard of permissible limit of arsenic in drinking water) and 17% had arsenic at above 300 microg l(-1) (the concentration predicting overt arsenical skin lesions). From our preliminary medical screening, 1488 of the 7221 people examined in the 44 villages of Jalangi block exhibit definite arsenical skin lesions. An estimation of probable population that may suffer from arsenical skin lesions and cancer in the Jalangi block has been evaluated comparing along with international data. A total of 1600 biologic samples including hair, nail and urine have been analyzed from the affected villages of Jalangi block and on an average 88% of the biologic samples contain arsenic above the normal level. Thus, a vast population of the block may have arsenic body burden. Cases of Bowen's disease and cancer have been identified among adults who also show arsenical skin lesions and children in this block are also seriously affected. Obstetric examinations were also carried out in this block.  相似文献   

4.
Health effects associated with chronic, low-level exposures to arsenic in drinking water (<100 microg/L) remain unclear, in part due to uncertainties in assessing exposure. Drinking water concentrations have been used to assess past exposure to arsenic in epidemiological studies, under the assumption that a single measurement can be used to estimate historical exposure. This study aims to better understand (1) temporal variability in arsenic concentrations in drinking water and (2) the impact of point-of-use (POU) treatment devices on arsenic exposure measurements, and on reliability of the exposure measurement for population-level studies. Multiple drinking water samples were collected at two points in time (an average of fourteen months apart) for 261 individuals enrolled in a case-control study of arsenic exposure and bladder cancer in Michigan. Sources of drinking water included private wells (n = 221), public water supplies (n = 33), and bottled water (n = 7); mean arsenic concentration was highest in private wells (7.28 microg/L) and lowest in bottled water samples (0.28 microg/L). Arsenic concentrations in primary drinking water samples were highly correlated (r = 0.88, p < 0.0001, n = 196), with 3% of the water sources exceeding the United States Environmental Protection Agency's Maximum Contaminant Level (MCL) in one sample but not in the other sample. Measurement reproducibility did not vary by type of POU device (e.g., softener, filter, reverse osmosis system). Arsenic concentrations did differ, however, between samples treated with POU devices and untreated samples taken on the same day. Substantial differences in arsenic concentrations were consistently observed for reverse osmosis systems; other POU devices had variable effects on arsenic concentrations. These results indicate that while a single residential arsenic measurement may be used to represent exposure in this region, researchers must obtain information on changes in water source and POU treatment devices to better characterize population exposures over time.  相似文献   

5.
The toxic and carcinogenic properties of inorganic and organic arsenic species make their determination in natural water vitally important. Determination of individual inorganic and organic arsenic species is critical because the toxicology, mobility, and adsorptivity vary substantially. Several methods for the speciation of arsenic in groundwater, surface-water, and acid mine drainage sample matrices using field and laboratory techniques are presented. The methods provide quantitative determination of arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA), dimethylarsinate (DMA), and roxarsone in 2-8 min at detection limits of less than 1 microg arsenic per liter (microg As L(-1)). All the methods use anion exchange chromatography to separate the arsenic species and inductively coupled plasma-mass spectrometry as an arsenic-specific detector. Different methods were needed because some sample matrices did not have all arsenic species present or were incompatible with particular high-performance liquid chromatography (HPLC) mobile phases. The bias and variability of the methods were evaluated using total arsenic, As(III), As(V), DMA, and MMA results from more than 100 surface-water, groundwater, and acid mine drainage samples, and reference materials. Concentrations in test samples were as much as 13,000 microg As L(-1) for As(III) and 3700 microg As L(-1) for As(V). Methylated arsenic species were less than 100 microg As L(-1) and were found only in certain surface-water samples, and roxarsone was not detected in any of the water samples tested. The distribution of inorganic arsenic species in the test samples ranged from 0% to 90% As(III). Laboratory-speciation method variability for As(III), As(V), MMA, and DMA in reagent water at 0.5 microg As L(-1) was 8-13% (n=7). Field-speciation method variability for As(III) and As(V) at 1 microg As L(-1) in reagent water was 3-4% (n=3).  相似文献   

6.
Arsenic interferes with the function of enzymes responsible for haem biosynthesis leading to alteration in the porphyrin profile. In this study, young female C57Bl/6J mice were given drinking water containing 0, 100, 250 and 500 microg As(V)/L as sodium arsenate ad libitum for 24 months. 24 h pooled urine samples were collected bimonthly for urinary arsenic methylation and porphyrin analyses by HPLC-ICP-MS and HPLC respectively. The levels of total arsenic were significantly dose related except for the 2nd month interval. No significant differences in the urinary arsenic methylation pattern between control and test groups were observed. Coproporphyrin I (Copro I) showed a significant dose-response relationship after 12, 14 and 20 months of exposure. Significant differences in the levels of coproporphyrin III (Copro III) were observed in the 8th month in 250 and 500 microg/L treatment groups and the dose-response pattern was maintained after 10 and 12 months. Our results suggest that urinary arsenic is a useful biomarker for internal dose, and that urinary coproporphyrin can be used as an early warning biomarker of effects before the onset of cancer.  相似文献   

7.
The health implications of the consumption of high arsenic groundwater in Bangladesh and West Bengal are well-documented, however, little is known about the level of arsenic exposure elsewhere in Southeast Asia, where widespread exploitation of groundwater resources is less well established. We measured the arsenic concentrations of nail and hair samples collected from residents of Kandal province, Cambodia, an area recently identified to host arsenic-rich groundwaters, in order to evaluate the extent of arsenic exposure. Nail and hair arsenic concentrations ranged from 0.20 to 6.50 microg g(-1) (n=70) and 0.10 to 7.95 microg g(-1) (n=40), respectively, in many cases exceeding typical baseline levels. The arsenic content of the groundwater used for drinking water purposes (0.21-943 microg L(-1) (n=31)) was positively correlated with both nail (r=0.74, p<0.0001) and hair (r=0.86, p<0.0001) arsenic concentrations. In addition, the nail and hair samples collected from inhabitants using groundwater that exceeded the Cambodian drinking water legal limit of 50 microg L(-1) arsenic contained significantly more arsenic than those of individuals using groundwater containing <50 microg L(-1) arsenic. X-ray absorption near edge structure (XANES) spectroscopy suggested that sulfur-coordinated arsenic was the dominant species in the bulk of the samples analysed, with additional varying degrees of As(III)-O character. Tentative linear least squares fitting of the XANES data pointed towards differences in the pattern of arsenic speciation between the nail and hair samples analysed, however, mismatches in sample and standard absorption peak intensity prevented us from unambiguously determining the arsenic species distribution. The good correlation with the groundwater arsenic concentration, allied with the relative ease of sampling such tissues, indicate that the arsenic content of hair and nail samples may be used as an effective biomarker of arsenic intake in this relatively recently exposed population.  相似文献   

8.
Large alluvial deltas of the Mekong River in southern Vietnam and Cambodia and the Red River in northern Vietnam have groundwaters that are exploited for drinking water by private tube-wells, which are of increasing demand since the mid-1990s. This paper presents an overview of groundwater arsenic pollution in the Mekong delta: arsenic concentrations ranged from 1-1610 microg/L in Cambodia (average 217 microg/L) and 1-845 microg/L in southern Vietnam (average 39 microg/L), respectively. It also evaluates the situation in Red River delta where groundwater arsenic concentrations vary from 1-3050 microg/L (average 159 microg/L). In addition to rural areas, the drinking water supply of the city of Hanoi has elevated arsenic concentrations. The sediments of 12-40 m deep cores from the Red River delta contain arsenic levels of 2-33 microg/g (average 7 microg/g, dry weight) and show a remarkable correlation with sediment-bound iron. In all three areas, the groundwater arsenic pollution seem to be of natural origin and caused by reductive dissolution of arsenic-bearing iron phases buried in aquifers. The population at risk of chronic arsenic poisoning is estimated to be 10 million in the Red River delta and 0.5-1 million in the Mekong delta. A subset of hair samples collected in Vietnam and Cambodia from residents drinking groundwater with arsenic levels >50 microg/L have a significantly higher arsenic content than control groups (<50 microg/L). Few cases of arsenic related health problems are recognized in the study areas compared to Bangladesh and West Bengal. This difference probably relates to arsenic contaminated tube-well water only being used substantially over the past 7 to 10 years in Vietnam and Cambodia. Because symptoms of chronic arsenic poisoning usually take more than 10 years to develop, the number of future arsenic related ailments in Cambodia and Vietnam is likely to increase. Early mitigation measures should be a high priority.  相似文献   

9.
Many Bangladeshi suffer from arsenic-related health concerns. Most mitigation activities focus on identifying contaminated wells and reducing the amount of arsenic ingested from well water. Food as a source of arsenic exposure has been recently documented. The objectives of this study were to measure the main types of arsenic in commonly consumed foods in Bangladesh and estimate the average daily intake (ADI) of arsenic from food and water. Total, organic and inorganic, arsenic were measured in drinking water and in cooked rice and vegetables from Bangladeshi households. The mean total arsenic level in 46 rice samples was 358 microg/kg (range: 46 to 1,110 microg/kg dry weight) and 333 microg/kg (range: 19 to 2,334 microg/kg dry weight) in 39 vegetable samples. Inorganic arsenic calculated as arsenite and arsenate made up 87% of the total arsenic measured in rice, and 96% of the total arsenic in vegetables. Total arsenic in water ranged from 200 to 500 microg/L. Using individual, self-reported data on daily consumption of rice and drinking water the total arsenic ADI was 1,176 microg (range: 419 to 2,053 microg), 14% attributable to inorganic arsenic in cooked rice. The ADI is a conservative estimate; vegetable arsenic was not included due to limitations in self-reported daily consumption amounts. Given the arsenic levels measured in food and water and consumption of these items, cooked rice and vegetables are a substantial exposure pathway for inorganic arsenic. Intervention strategies must consider all sources of dietary arsenic intake.  相似文献   

10.
Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n = 187). The referent samples of both genders were also collected from the areas having low level of As (< 10 μg/L) in drinking water (n = 121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 μg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 μg As/g for hair and < 0.5-4.2 μg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2 = 0.852 and 0.718) as compared to non-diseased subjects (R2 = 0.573 and 0.351), respectively.  相似文献   

11.
Laboratory and field tests were conducted to evaluate the effectiveness of a household filtration process and investigate the effects of phosphate and silicate on the removal of arsenic from Bangladesh groundwater by ferric hydroxides. Fe/As ratios of greater than 40 (mg/mg) were required to reduce arsenic to less than 50 microg/L in Bangladesh well water due to the presence of elevated phosphate and silicate concentrations. The household filtration process included co-precipitation of arsenic by adding a packet (approximately 2 g) of ferric and hypochlorite salts to 20 L of well water and subsequent filtration of the water through a bucket sand filter. A field demonstration study was performed to test the treatment system in seven households in Bangladesh in March and April 2000. Experimental results obtained from the participating families proved that the household treatment process removed arsenic from approximately 300 microg/L in the well water to less than 50 microg/L. The participating families liked this simple and affordable process and used it to prepare clean water for drinking and cooking. A larger scale field test is currently underway.  相似文献   

12.
Recently, the maximum contaminate level (MCL) for arsenic was lowered to 10 microg/L in community water systems (CWS) throughout the United States. In this study, CWS in Oregon were assessed for the occurrence and magnitude of arsenic >10 microg/L between the effective and compliance dates for the new MCL. Ten CWS, with a combined population of 49,395, met the criteria for this study. Arsenic levels above the new MCL ranged from 11-25 microg/L. The demographic characteristics of these systems were queried and considered in the context of risk, exposure and outreach. A disproportionate percent of residents in affected CWS were of Hispanic origin (35%) compared to the statewide average (8%). Residents in these CWS had a lower median household income (20% less than the statewide average), a lower median age (32.5 vs. 36.3) and a higher percent of a second language spoken in the home besides English (34.6% vs. 12.1%) compared to the statewide census. These community characteristics have implications for exposure, risk and outreach associated with the occurrence of arsenic in drinking water. Consequently, demographic parameters are informative for risk management and communication and ultimately, beneficial to the affected public.  相似文献   

13.
The cities in the Aksios and Kalikratia areas in Northern Greece rely on arsenic contaminated groundwater for their municipal water supply. As remedial action strongly depends on arsenic speciation, the presence of other possible contaminants, and on the general water composition, a detailed study with samples from 21 representative locations was undertaken. Arsenic concentrations were typically 10-70 microg/L. In the groundwaters of the Aksios area with lower Eh values (87-172 mV), pH 7.5-8.2 and 4-6 mM HCO(3) alkalinity, As(III) predominated. Manganese concentrations were mostly above the EC standard of 0.05 mg/L (0.1-0.7 mg/L). In groundwaters of the Kalikratia area with higher Eh values (272-352 mV), pH 6.7-7.5 and 6-12 mM HCO(3) alkalinity, As(V) was the main species. Uranium in the groundwaters was also investigated and correlations with total arsenic concentrations and speciation were examined to understand more of the redox chemistry of the examined groundwaters. Uranium concentrations were in the range 0.01-10 microg/L, with the higher concentrations to occur in the oxidizing groundwaters of the Kalikratia area. Uranium and total arsenic concentrations showed no correlation, whereas uranium concentrations correlated strongly with As(III)/As(tot) ratios, depicting their use as a possible indicator of groundwater redox conditions. Finally, boron was found to exceed the EC drinking water standard of 1 mg/L in some wells in the Kalikratia area and its removal should also be considered in the design of a remedial action.  相似文献   

14.
Performance of nanofiltration for arsenic removal   总被引:19,自引:0,他引:19  
Sato Y  Kang M  Kamei T  Magara Y 《Water research》2002,36(13):3371-3377
Performance of rapid sand filtration inter-chlorination system was compared with nanofiltration (NF) to reduce the arsenic health risk of drinking water. It was found that rapid sand filtration with inter-chlorination is not effective in removing arsenic. If total arsenic concentration in raw water is below 50 microg/L regardless of the turbidity of raw water, arsenic can be removed below WHO guideline value of 10 microg/L by conventional coagulation (polyaluminum chloride dosage is about 1.5 mg Al/L). However, if the raw water arsenic concentration exceeds 50 microg/L, more coagulant dosage or enhanced coagulation is needed. To adopt optimum coagulant dosage for arsenic removal, it needs to monitor raw water arsenic concentration, but it is difficult because arsenic measurement is time consuming. In addition, if raw water contains As(III), it is difficult for rapid sand filtration inter-chlorination system to meet an arsenic maximum contaminant level of 2 microg/L, which would achieve reduction of cancer risk below 10(-4). On the other hand, the NF membrane (NaCl rejection 99.6%) could remove over 95% of As(V) under relatively low-applied pressure (< 1.1 MPa). Furthermore, more than 75% of As(III) could be removed using this membrane without any chemical additives, while trivalent arsenic could not be removed by rapid sand filtration system without pre-oxidation of As(III) to As(V). Because both As(V) and As(III) removals by NF membranes were not affected by source water composition, it is suggested that NF membrane can be used in any types of waters.  相似文献   

15.
An investigation of arsenic, copper, nickel, manganese, zinc and selenium concentration in foodstuffs and drinking water, collected from 34 families and estimation of the average daily dietary intake were carried out in the arsenic-affected areas of the Jalangi and Domkal blocks, Murshidabad district, West Bengal where arsenic-contaminated groundwater (mean: 0.11 mg/l, n=34) is the main source for drinking. The shallow large diameter tubewells, installed for agricultural irrigation contain an appreciable amount of arsenic (mean: 0.094 mg/l, n=10). So some arsenic can be expected in the food chain and food cultivated in this area. Most of the individual food composites contain a considerable amount of arsenic. The mean arsenic levels in food categories are vegetables (20.9 and 21.2 microg/kg), cereals and bakery goods (130 and 179 microg/kg) and spices (133 and 202 microg/kg) for the Jalangi and Domkal blocks, respectively. For all other heavy metals, the observed mean concentration values are mostly in good agreement with the reported values around the world (except higher zinc in cereals). The provisional tolerable daily intake value of inorganic arsenic microg/kg body wt./day) is: for adult males (11.8 and 9.4); adult females (13.9 and 11); and children (15.3 and 12) in the Jalangi and Domkal blocks, respectively (according to FAO/WHO report, the value is 2.1 microg/kg body wt./day). According to WHO, intake of 1.0 mg of inorganic arsenic per day may give rise to skin lesions within a few years. The average daily dietary intake of copper, nickel and manganese is high, whereas for zinc, the value is low (for adult males: 8.34 and 10.2 mg/day; adult females: 8.26 and 10.3 mg/day; and children: 4.59 and 5.66 mg/day) in the Jalangi and Domkal blocks, respectively, compared to the recommended dietary allowance of zinc for adult males, adult females and children (15, 12 and 10 mg/day, respectively). The average daily dietary intake of selenium microg/kg body wt./day) is on the lower side for the children (1.07 and 1.22), comparable for the adult males (0.81 and 0.95) and slightly on the higher side for the adult females (1.08 and 1.26), compared to the recommended value (1.7 and 0.9 microg/kg body wt./day for infants and adults, respectively).  相似文献   

16.
The use of a synthetically prepared clay material, hydrotalcite (HT), for the removal of arsenite (As(III)) and arsenate (As(V)) from drinking water is described. Percolation through HT of water containing 500-1000 microg/L As (levels often found in As-contaminated well water) produced leachate with As levels well below 10 microg/L. The technology could be coupled to that used in less-developed regions for removing organisms from drinking water, viz. leaching through porous pots and filter candles. The 'spent' HT is easily converted into valuable phosphatic fertilizer that would have an insignificant effect on soil arsenic levels, thereby reducing the overall cost of manufacture and distribution.  相似文献   

17.
This study analyzed the potential health risk associated with the ingestion of arsenic-affected groundwater in the arseniasis-endemic Lanyang plain of northeastern Taiwan. Indicator kriging was used to estimate arsenic concentrations in groundwater. Target cancer risk (TR) and dose response functions were adopted to evaluate the potential health risk based on the estimated arsenic concentration distributions. The estimated arsenic concentrations in groundwater reveal that arsenic concentrations (>50 microg/L) in well water are high in six townships - JiaoSi, YiLan, JhungWei, WuJie, DonShan and LouDon. Highest arsenic concentrations (70.32 microg/L) are in the YiLan and the JhungWei townships. The estimated TR values at the arsenic-affected townships are ten times more than an acceptable standard (10(-6)). The largest TR values are 145.5 and 91.2 times higher than an acceptable standard for males and females, respectively. The estimated annual mortalities by arsenic-induced internal cancers occur in the YiLan township (ten cases), LouDon (five cases), WuJie (three cases), JhungWei (two cases) and DonShan (one case). The highest number of mortalities per year in the study area is 24. Residents of the six townships with high arsenic-affected groundwater should use tap water as drinking water and use groundwater only for other purpose. The well water in other townships in the Lanyang plain has no adverse effects on human health.  相似文献   

18.
Batch-Mixed Iron Treatment of High Arsenic Waters   总被引:1,自引:0,他引:1  
This paper develops batch-mixed treatment with zero-valent iron as a point-of-use technology, appropriate for arsenic removal from water stored within rural homes in Bangladesh and West Bengal, India, where arsenic poisoning has affected an estimated 20 million people. Batch tests with iron yielded the following results: (1) High arsenic removal (>93%) was achieved from highly arsenated waters (2000 μg/L) over short contact times (0.5–3 h) with iron filings added at doses ranging from 2500 to 625 mg/L; (2) Most rapid arsenic removal was observed in head-space free systems with sulphates present in solution, while phosphate buffers were observed to inhibit arsenic removal by iron; (3) The arsenic removed from water was found to be strongly bound to the elemental iron filings, such that the treated water could be decanted and iron could be reused at least 100 times; (4) Some iron dissolved into water over the contact period, at concentrations ranging from 100 to 300 μg/L, which are within safe drinking water limits. These results indicate that, with appropriate assessment of water chemistry in the affected region, treatment with metallic iron followed by simple decantation can be used as a practical, in-home, point-of-use technique for reducing human exposure to arsenic in drinking water.  相似文献   

19.
There is an urgent need for Bangladesh to identify the arsenic (As) contaminated tubewells (TWs) in order to assess the health risks and initiate appropriate mitigation measures. This will involve testing water in millions of TWs and raising community awareness about the health problems related to chronic As exposure from drinking water. Field test kits offer the only practical tool within the time frame and financial resources available for screening and assessment of the As contaminated TWs as well as their monitoring than that of the laboratory measurement. A comparison of field test kit and laboratory measurements by AAS as "gold standard" for As in water of 12,532 TWs in Matlab Upazila in Bangladesh, indicates that the field kit correctly determined the status of 91% of the As levels compared to the Bangladesh Drinking Water Standard (BDWS) of 50 microg/L, and 87% of the WHO guideline value of 10 microg/L. Nevertheless, due to analytical and human errors during the determination of As by the field test kits, some misclassification of wells is inevitable. Cross-checking of the field test kit results, both by Field Supervisor and by the laboratory analyses reveal considerable discrepancies in the correct screening mainly at As concentration ranges of 10-24.9 microg/L and 50-99.9 microg/L, critical from a public health point of view. The uncertainties of misclassification of these two groups of TWs have severe public health implications due to As exposure from drinking water sources. This can be reduced through proper training of the field personnel, cross verification of the field test kit results with laboratory analyses and further development of the field test kits to determine As at low concentrations.  相似文献   

20.
Soil and soil-water As profiles were obtained from 4 rice paddies in Bangladesh during the wet growing season (May-November), when surface water with little arsenic is used for irrigation, or during the dry season (January-May), when groundwater elevated in arsenic is used instead. In the upper 5 cm of paddy soil, accumulation of 13+/-12 mg/kg acid-leachable As (n=11) was observed in soil from 3 sites irrigated with groundwater containing 80-180 microg/L As, whereas only 3+/-2 mg/kg acid-leachable As (n=8) was measured at a control site. Dissolved As concentrations averaged 370+/-340 microg/L (n=7) in the upper 5 cm of the soil at the 3 sites irrigated with groundwater containing 80-180 microg/L As, contrasting with soil water As concentrations of only 18+/-7 microg/L (n=4) over the same depth interval at the control site. Despite the accumulation of As in soil and in soil water attributable to irrigation with groundwater containing elevated As levels, there is no evidence of a proportional transfer to rice grains collected from the same sites. Digestion and analysis of individual grains of boro winter rice from the 2 sites irrigated with groundwater containing 150 and 180 microg/L As yielded concentrations of 0.28+/-0.13 mg/kg (n=12) and 0.44+/-0.25 mg/kg (n=12), respectively. The As content of winter rice from the control site was not significantly different though less variable (0.30+/-0.07; n=12). The observations suggest that exposure of the Bangladesh population to As contained in rice is less of an immediate concern than the continued use of groundwater containing elevated As levels for drinking or cooking, or other potential consequences of As accumulation in soil and soil-water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号