首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
1. Synaptic potentials induced by 4-aminopyridine (4-AP) were recorded intracellularly from rat neostriatal neurons in an in vitro slice preparation. EC50 for this 4-AP action was approximately 120 microM. The threshold for activation of synaptic potentials was 5 microM. 2. 4-AP-induced synaptic potentials appeared stochastically. Most were blocked by 1 microM tetrodotoxin or 400 microM Cd2+. Therefore they reflect a release of neurotransmitters dependent on both Ca2+ entry to the terminals and action potential firing. 3. Bicuculline (BIC) (< or = 10 microM), a gamma-aminobuturic acid-A (GABAA) antagonist, blocked about half of the 4-AP-induced synaptic potentials. This suggests that intrinsic inhibitory connections within the neostriatum are activated by 4-AP administration. 4. 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; < or = 10 microM) plus D-2-amino-5-phosphonovaleric acid (D-APV; < or = 100 microM) blocked most of the BIC-resistant 4-AP-induced synaptic potentials. This suggests that 4-AP induced release of glutamate (GLU) from extrinsic glutamatergic afferents. As most glutamatergic afferents are extrinsic, these afferents then would be able to fire spikes and release transmitter for several hours after they are cut from their somata. 5. If CNQX plus D-APV were administered before BIC, neostriatal neurons responded in different ways. In one half of the neurons, all induced synaptic potentials were blocked. This suggests that most GABAergic intrinsic connections between neostriatal neurons are activated indirectly by 4-AP. 4-AP would first activate extrinsic glutamatergic afferents and these in turn would activate GABAergic intrinsic neurons and connections. 6. In the remaining half of the recorded neurons, administration of CNQX plus D-APV blocked most, but not all of the 4-AP-induced synaptic potentials. The synaptic potentials that remained had a characteristic pattern: they were high amplitude, rhythmic, bursts of synaptic potentials. They were blocked by BIC (5 microM) but not by mecamylamine (> 10 microM). This suggests that these bursts of synaptic potentials were GABAergic and generated by intrinsic neurons. Therefore these neurons would not innervate all neostriatal neurons equally but just a subset of them. 7. Records from an identified aspiny neostriatal interneuron, obtained from the same preparation, are shown. This interneuron fired in bursts and its morphologically and physiologically similar to the recently described, fast spiking, parvalbumin immunoreactive, GABAergic, aspiny interneuron is functional in the slice preparation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Muscarinic autoreceptors regulate acetylcholine (ACh) release in several brain regions, including the medial pontine reticular formation (mPRF). This study tested the hypothesis that the muscarinic cholinergic receptor mediating mPRF ACh release is the pharmacologically defined M2 subtype. In vivo microdialysis was used to deliver muscarinic cholinergic receptor (MAChR) antagonists to the feline mPRF while simultaneously measuring endogenously released ACh. The lowest concentration of each antagonist that caused a significant increase in mPRF ACh release was determined and defined as the minimum ACh-releasing concentration. Data obtained from 41 mPRF dialysis sites in 10 animals showed that the order of potency (followed by the minimum ACh-releasing concentration) was scopolamine (1 nM) > AF-DX 116 (3 nM) > pirenzepine (300 nM). Comparison of these minimum ACh-releasing concentrations to the known affinities of the antagonists for the five mAChR subtypes is consistent with the conclusion that the autoreceptor regulating mPRF ACh release is the M2 subtype. Considerable evidence supports a role for cholinergic neurotransmission and postsynaptic M2 receptors in the mPRF in regulating levels of arousal. The present data suggest that presynaptic M2 receptors contribute to the regulation of arousal states by modulating mPRF ACh release.  相似文献   

3.
We addressed the role of muscarinic receptor subtypes in neurally mediated bronchoconstriction in vivo and airway smooth muscle contraction in vitro in the newborn dog. The in vivo dose-response effects of "selective" muscarinic antagonists on changes in lung resistance (RL) and heart rate (HR) in response to electrical stimulation of the vagus nerves were obtained in four groups of newborns. Each group was exposed to a different muscarinic antagonist: M1-selective pirenzepine (pir), M2-selective AF-DX 116 (11-[2-[(diethylamino)methyl]-1-piperidinyl]acetyl-5,11-dihydro-6H-pyrid o- [2,3-b]-[1,4]-benzodiazepine-6-one), M3-selective p-F-HHSiD (p-fluoro-hexahydro-sila-difenidol), and nonselective atropine (atr). In vitro concentration-response effects of pir and AF-DX 116 were obtained for neurally induced contractions of tracheal smooth muscle, elicited by electrical field stimulation. In a separate series of experiments we measured the bronchoconstrictor response to the muscarinic agonist acetylcholine delivered by right heart injection. Muscarinic antagonists reduced RL and HR responses to vagal stimulation in a dose-dependant fashion; however, ED50 values and selectivity for airway and cardiac responses (HR/RL ED50 ratio) were significantly different between antagonists. The rank order of potencies for inhibition of the increase in RL was atr > pir, M1 > p-F-HHSiD, M3 > AF-DX 116, M2, while that for HR was atr > AF-DX 116 > pir > p-F-HHSiD. AF-DX 116 preferentially inhibited the HR response, as reflected by the lowest HR/RL ED50 ratio (p < 0.001). The remaining antagonists preferentially inhibited RL, with the highest HR/RL ED50 ratio seen for p-F-HHSiD. These data suggest that muscarinic receptor subtypes are differentiated at birth and mediate cardiac and airway responses to vagal stimulation. We did not find autoinhibitory actions of airway M2 receptors on either the in vivo bronchoconstrictor response or the in vitro contractile response to electrical field stimulation. This suggests that neonatal airway M2 receptors, but not myocardial M2 receptors, are reduced in number or weakly coupled to muscarinic signal transduction mechanisms. Direct activation of airway smooth muscle by acetylcholine caused dose-dependent increases in RL that reached a plateau at approximately 200% at 100 micrograms, similar to values reported for vagal stimulation.  相似文献   

4.
Modulation of high-voltage-activated Ca2+ channels by muscarinic receptor agonists was investigated in isolated parasympathetic neurons of neonatal rat intracardiac ganglia using the amphotericin B perforated-patch whole cell recording configuration of the patch-clamp technique. Focal application of the muscarinic agonists acetylcholine (ACh), muscarine, and oxotremorine-M to the voltage-clamped soma membrane reversibly depressed peak Ca2+ channel current amplitude. The dose-response relationship obtained for ACh-induced inhibition of Ba2+ current (IBa) exhibited a half-maximal inhibition at 6 nM. Maximal inhibition of IBa amplitude obtained with 100 microM ACh was approximately 75% compared with control at +10 mV. Muscarinic agonist-induced attenuation of Ca2+ channel currents was inhibited by the muscarinic receptor antagonists pirenzepine (/=30% at +90 mV in the presence of ACh, indicating a voltage-independent component to the muscarinic receptor-mediated inhibition. Both dihydropyridine- and omega-conotoxin GVIA-sensitive and -insensitive Ca2+ channels were inhibited by ACh, suggesting that the M4 muscarinic receptor is coupled to multiple Ca2+ channel subtypes in these neurons. Inhibition of IBa amplitude by muscarinic agonists was also observed after cell dialysis using the conventional whole cell recording configuration. However, internal perfusion of the cell with 100 microM guanosine 5'-O-(2-thiodiphosphate) trilithium salt (GDP-beta-S) or incubation of the neurons in Pertussis toxin (PTX) abolished the modulation of IBa by muscarinic receptor agonists, suggesting the involvement of a PTX-sensitive G-protein in the signal transduction pathway. Given that ACh is the principal neurotransmitter mediating vagal innervation of the heart, the presence of this inhibitory mechanism in postganglionic intracardiac neurons suggests that it may serve for negative feedback regulation.  相似文献   

5.
Muscarinic agonists can act through the hypothalamic ventromedial nucleus (VMN) to facilitate lordosis. To elucidate the neuronal mechanism(s) underlying this muscarinic facilitation, effects of muscarinic agents on the single-unit activity of VMN neurons recorded in brain tissue slices of estrogen-primed female rats were analyzed. All the agonists tested, including acetylcholine (ACh), oxotremorine-M (OM), carbachol (CCh) and McN-A-343 (McN), evoked primarily excitation (80-100%), some inhibition (0-20%) and occasional biphasic responses (0-8%). By comparing the response magnitude and the effectiveness in evoking a response, the rank order for evoking excitation, the primary response, was found to be: OM > CCh > ACh approximately McN, which is consistent with that (OM > CCh > McN) for facilitating lordosis reported by others. This consistency and the frequency of its occurrence suggest that the excitatory electric action of the muscarinic agonists is related to their facilitatory behavioral effect. Experiments with antagonists selective for M1 (pirenzepine), M2 (AF-DX 116) and M3 (4-DAMP and p-F-HHSiD) indicate that muscarinic excitations are mediated by M1 and/or M3, but not M2. Since M1 receptors have been shown to be neither sufficient nor necessary to mediate the muscarinic facilitation, M3 receptor may be crucially involved in this behavioral effect. Autoradiographic assays of binding to [3H]4-DAMP with or without pirenzepine and AF-DX 116, also indicate the presence of M3 receptors in the VMN. Quantitative analyses show that the M3 binding was not affected by the in vivo estrogen priming required to permit muscarinic agonists to facilitate lordosis. Thus, while the excitation mediated by M3 is likely to be involved in muscarinic facilitation of lordosis, the regulation of M3 receptor density does not seem to be involved in the permissive  相似文献   

6.
1. We have studied the effects of muscarinic cholinoceptor agonists and subtype-preferring antagonists on the isometric contraction of smooth muscle strips from dog prostate. 2. Acetylcholine and carbachol induced contraction of prostate strips from the peripheral zone, ('the capsule'). Bethanechol contracted the tissue but not at lower doses. McN-A-343 and oxotremorine-M showed the same effects. 3. Blocking alpha- and beta-adrenoceptors with phentolamine and propranolol, respectively, did not modify carbachol-induced contractions. 4. The nicotinic receptor blocker, hexamethonium (10(-6)-10(-4) M) did not affect the contractile response evoked by a single dose of carbachol (10(-5) M), whilst the muscarinic receptor antagonist, atropine (10(-11)-10(-9) M), inhibited it in a competitive manner. 5. The muscarinic M1 (pirenzepine), M2 [AF-DX 116, himbacine (M2/M4) and methoctramine], M3 (HHSID and f-F-HHSID), and putative M4 (tropicamide) antagonists reduced significantly the carbachol-induced contractions. The pIC50 values were: atropine (10.01) > himbacine (8.3) > methoctramine (7.85) > AF-DX 116 (7.60) > HHSID (7.21) > p-F-HHSID (7.10) > pirenzepine (7.30) > tropicamide (7.00). 6. The antagonist profile indicates that an predominant M2 receptor subtype could mediate the muscarinic contraction in the canine prostate.  相似文献   

7.
Glutamatergic synaptic potentials induced by micromolar concentrations of the potassium conductance blocker 4-aminopyridine (4-AP) were recorded intracellularly from rat neostriatal neurons in the presence of 10 microM bicuculline (BIC). These synaptic potentials originate from neostriatal cortical and thalamic afferents and were completely blocked by 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) plus 100 microM D-2-amino-5-phosphonovaleric acid (2-APV). Their inter-event time intervals could be fitted to exponential distributions, suggesting that they are induced randomly. Their amplitude distributions had most counts around 1 mV and fewer counts with values up to 5 mV. Since input resistance of the recorded neurons is about 40 M omega, the amplitudes agree to quantal size measurements in mammalian central neurons. The action of a D2 agonist, quinpirole, was studied on the frequency of these events. Mean amplitude of synaptic potentials was preserved in the presence of 2-10 microM quinpirole, but the frequency of 4-AP-induced glutamatergic synaptic potentials was reduced in 35% of cases. The effect was blocked by the D2 antagonist sulpiride (10 microM). Input resistance, membrane potential, or firing threshold did not change during quinpirole effect, suggesting a presynaptic site of action for quinpirole in some but not all glutamatergic afferents that make contact on a single cell. The present experiments show that dopaminergic presynaptic modulation of glutamatergic transmission in the neostriatum does not affect all stimulated afferents, suggesting that it is selective towards some of them. This may control the quality and quantity of afferent flow upon neostriatal neurons.  相似文献   

8.
1 The present study examined the role of muscarinic receptors in the modulation of noradrenaline (NA) release in the guinea-pig isolated distal colon. The spontaneous endogenous NA overflow assayed by HPLC-ED was taken as an index of NA release from enteric noradrenergic nerve terminals. 2 Physostigmine (10 microM) significantly enhanced spontaneous endogenous NA overflow. Hyoscine (muscarinic antagonist), (R)-(-)-trihexyphenidyl and telenzepine (M1-selective antagonists), and 11[[2-[(diethylamino)methyl]-1-piperydil]acetyl]-5,11 -dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX 116, M2-selective antagonist) inhibited NA overflow in a concentration dependent manner, with the following EC50 values: 131.74 (18.19-953.96), 101.62 (58.83-175.60), 150 (60-330), 30 (5-170) nM, respectively. 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, M1- and M3-selective antagonist) had no significant effect up to 100 microM. 3 The muscarinic agonist oxotremorine inhibited NA overflow in a concentration dependent manner, with an EC50 value of 0.67 (0.30-1.51) microM. The response to oxotremorine was inhibited by muscarinic antagonists with the following order of potency: hyoscine = (R)-(-)-trihexyphenidyl = telenzepine > 4-DAMP > AF-DX 116. 4 In the presence of 3 microM tetrodotoxin (TTX), the effect of oxotremorine and 4-DAMP was unchanged, while hyoscine, (R)-(-)-trihexyphenidyl, telenzepine and AF-DX 116, instead of inhibiting, significantly enhanced NA overflow. 5 The present results indicate that, in the guinea-pig colon, endogenous acetylcholine sustains spontaneous NA release by activating muscarinic receptors possibly located on interneurones. In addition, inhibitory muscarinic receptors may exist on adrenergic terminals.  相似文献   

9.
1. Urinary bladder smooth muscle is enriched with muscarinic receptors, the majority of which are of the M2 subtype whereas the remaining minority belong to the M3 subtype. The objective of the present study was to assess the functional role of M2 and M3 receptors in the urinary bladder of rat in vitro and in vivo by use of key discriminatory antagonists. 2. In the isolated bladder of rat, (+)-cis-dioxolane produced concentration-dependent contractions (pEC50 = 6.3) which were unaffected by tetrodotoxin (0.1 microM). These contractions were antagonized by muscarinic antagonists with the following rank order of affinity (pA2) estimates: atropine (9.1) > 4-diphenyl acetoxy-methyl piperidine methiodide (4-DAMP) (8.9) > darifenacin (8.5) > para fluoro hexahydrosiladifenidol (p-F-HHSiD) (7.4) > pirenzepine (6.8) > methoctramine (5.9). These pA2 estimates correlated most favourably (r = 0.99, P < 0.001) with the binding affinity (pKi) estimates of these compounds at human recombinant muscarinic m3 receptors expressed in Chinese hamster ovary cells, suggesting that the receptor mediating the direct contractile responses to (+)-cis-dioxolane equates with the pharmacologically defined M3 receptor. 3. As M2 receptors in smooth muscle are negatively coupled to adenylyl cyclase, we sought to determine whether a functional role of M2 receptors could be unmasked under conditions of elevated adenylyl cyclase activity (i.e., isoprenaline-induced relaxation of KCl pre-contracted tissues). Muscarinic M3 receptors were preferentially alkylated by exposing tissues to 4-DAMP mustard (40 nM, 1 h) in the presence of methoctramine (0.3 microM) to protect M2 receptors. Under these conditions, (+)-cis-dioxolane produced concentration-dependent reversal (re-contraction) of isoprenaline-induced relaxation (pEC50 = 5.8) but had marginal effects on pinacidil-induced, adenosine 3':5'-cyclic monophosphate (cyclic AMP)-independent, relaxation. The re-contractions were antagonized by methoctramine and darifenacin, yielding pA2 estimates of 6.8 and 7.6, respectively. These values are intermediate between those expected for these compounds at M2 and M3 receptors and were consistent with the involvement of both of these subtypes. 4. In urethane-anaesthetized rats, the cholinergic component (approximately 55%) of volume-induced bladder contractions was inhibited by muscarinic antagonists with the following rank order of potency (ID35%inh, nmol kg-1, i.v.): 4-DAMP (8.1) > atropine (20.7) > methoctramine (119.9) > darifenacin (283.3) > pirenzepine (369.1) > p-F-HHSiD (1053.8). These potency estimates correlated most favourably (r = 0.89, P = 0.04) with the pKi estimates of these compounds at human recombinant muscarinic m2 receptors. This is consistent with a major contribution of M2 receptors in the generation of volume-induced bladder contractions, although the modest potency of darifenacin does not exclude a role of M3 receptors. Pretreatment with propranolol (1 mg kg-1, i.v.) increased the ID35%inh of methoctramine significantly from 95.9 to 404.5 nmol kg-1 but had no significant effects on the inhibitory responses to darifenacin. These data suggest an obligatory role of beta-adrenoceptors in M2 receptor-mediated bladder contractions in vivo. 5. The findings of the present study suggest that both M2 and M3 receptors can cause contraction of the rat bladder in vitro and may also mediate reflex bladder contractions in vivo. It is proposed that muscarinic M3 receptor activation primarily causes direct contraction of the detrusor whereas M2 receptor activation can contract the bladder indirectly by reversing sympathetically (i.e. beta-adrenoceptor)-mediated relaxation. This dual mechanism may allow the parasympathetic nervous system, which is activated during voiding, to cause more efficient and complete emptying of the bladder.  相似文献   

10.
1. The effects of muscarinic antagonists on cationic current evoked by activating muscarinic receptors with the stable agonist carbachol were studied by use of patch-clamp recording techniques in guinea-pig single ileal smooth muscle cells. 2. Ascending concentrations of carbachol (3-300 microM) activated the cationic conductance in a concentration-dependent manner with conductance at a maximally effective carbachol concentration (Gmax) of 27.4+/-1.4 nS and a mean -log EC50 of 5.12+/-0.03 (mean+/-s.e.mean) (n=114). 3. Muscarinic antagonists with higher affinity for the M2 receptor, methoctramine, himbacine and tripitramine, produced a parallel shift of the carbachol concentration-effect curve to the right in a concentration-dependent manner with pA2 values of 8.1, 8.0 and 9.1, respectively. 4. All M3 selective muscarinic antagonists tested, 4-DAMP, p-F-HHSiD and zamifenacin, reduced the maximal response in a concentration-dependent and non-competitive manner. This effect could be observed even at concentrations which did not produce any increase in the EC50 for carbachol. At higher concentrations M3 antagonists shifted the agonist curve to the right, increasing the EC50, and depressed the maximum conductance response. Atropine, a non-selective antagonist, produced both reduction in Gmax (M3 effect) and significant increase in the EC50 (M2 effect) in the same concentration range. 5. The depression of the conductance by 4-DAMP, zamifenacin and atropine could not be explained by channel block as cationic current evoked by adding GTPgammaS to the pipette (without application of carbachol) was unaffected. 6. The results support the hypothesis that carbachol activates M2 muscarinic receptors so initiating the opening of cationic channels which cause depolarization; this effect is potentiated by an unknown mechanism when carbachol activates M3 receptors. As an increasing fraction of M3 receptors are blocked by an antagonist, the effects on cationic current of an increasing proportion of activated M2 receptors are disabled.  相似文献   

11.
Extracellular single-unit discharges were obtained from 165 spontaneously active neurons within the region of the rostral ventrolateral medulla (RVLM) by glass microelectrode from 89 brain slices of the Sprague-Dawley rats. The units could be divided into three types: regular (61.8%), irregular (24.2%) and silent (14%). Acetylcholine (ACh, 0.1, 0.3 mumol/L) showed four kinds of effects on spontaneous discharges of RVLM neurons: excitatory, inhibitory, biphasic and non-responsive, counting respectively 41.8%, 20%, 3% and 35.2% of the neurons tested. The excitatory effect of ACh was dose-dependent. The effects, either excitatory or inhibitory, of ACh (n = 49) were mostly blocked by atropine (0.3 mumol/L, n = 42). The excitatory effect of ACh (n = 14) could be blocked mainly by selective antagonist of M1 receptor, pirenzepine (PZ, 30 nmol/L, n = 9), but not by selective antagonist of M2 receptor, methoctramine (MT) and AFDX-116. The inhibitory effect of ACh (n = 10) could be blocked mostly by M2 receptor antagonist MT (30 nmol/L, n = 7); and this inhibitory effect (n = 9) could be blocked mostly by another M2 receptor antagonist AFDX-116 (30 nmol/L, n = 6), but not by M1 receptor antagonist PZ.  相似文献   

12.
Intracellular calcium measurements were performed in cultured human trabecular meshwork cells preloaded with the cell permeant dye fura 2-AM. Fluctuations in calcium levels were then monitored with microscope-based ratio fluorometry. Carbachol increased intracellular calcium in a dose-dependent manner; as did oxotremorine-M, aceclidine, and pilocarpine. Carbachol's effect was blocked by the non-selective muscarinic antagonist atropine, as well as by muscarinic receptor subtype-selective antagonists such as pirenzepine (M1-selective), p-fHHSiD (M3-selective), and 4-DAMP (M1, M3 subtypes). Rank order of potencies for the antagonists' effects was atropine = 4-DAMP > p-fHHSiD > pirenzepine, a profile suggesting that the M3 receptor subtype is essential in the carbachol effect. Phospholipase C activity was estimated via measurement of total production of inositol phosphates in cultured human trabecular meshwork cells pre-exposed to 3H-myoinositol. In these cells, carbachol also stimulated phosphoinositide production in a dose-dependent manner, and an antagonist profile similar to that seen for calcium response was obtained when carbachol was used as the effector. The data indicate that muscarinic effects on cultured human trabecular meshwork calcium mobilization and phospholipase C activity are mediated by an M3-like receptor subtype. Therefore, the muscarinic M3 receptor may play a role in trabecular meshwork cell function(s).  相似文献   

13.
The actions of peptidic toxins that work as Ca2+-channel antagonists were investigated on neostriatal glutamatergic transmission. Both intracellularly recorded excitatory postsynaptic potentials (EPSPs) and extracellularly recorded population spikes (PS) evoked by afferent stimulation were evaluated in the presence of 10 microM bicuculline. Percentage of block (mean +/- SEM; n = 4) for these events (EPSP and PS, respectively) was: omega-AgTxIVA (100-200 nM): 35 +/- 2 and 54 +/- 4%; omega-CgTxGVIA (1 microM): 37 +/- 3 and 63 +/- 6%; omega-CgTxMVIIC (500 nM): 40 +/- 4 and 50 +/- 2%; and calciseptine (500 nM): 5 +/- 4 and 9 +/- 6%. When given together, toxins had additive effects. The calciseptine effects were nonsignificant. The toxins were also tested on Ca2+-dependent random synaptic responses induced by 100 microM 4-AP. Each toxin reduced the frequency of spontaneous EPSPs by more than 60% (n = 2). The summed actions of individual toxins yields more than 100% block (superadditivity); suggesting that several terminals may possess more than one channel type. The reduction in frequency was not accompanied by a reduction in amplitude confirming that toxins' actions were presynaptic. It is concluded that at least three different Ca2+-channel subtypes are involved in glutamate release in neostriatal afferents: N-type, P/Q-type, and a type resistant to the toxins used. The L-type Ca2+-channel had little, if any, participation.  相似文献   

14.
In membranes of the rat frontal cortex, acetylcholine (ACh) and other cholinergic agonists were found to potentiate the stimulation of adenylyl cyclase activity elicited by corticotropin-releasing hormone (CRH). Oxotremorine-M, carbachol and methacholine were as effective as ACh, whereas oxotremorine and arecoline were much less effective. The facilitating effect of Ach was potently blocked by the M1 antagonists R-trihexyphenidyl, telenzepine and pirenzepine and by the M3 antagonists hexahydro-sila-difenidol and p-fluorohexahydro-sila-difenidol, whereas the M2 and M4 antagonists himbacine, methoctramine, AF-DX 116 and AQ-RA 741 were less potent. The mamba venom toxin MT-1, which binds with high affinity to M1 receptors, was also a potent blocker. The pharmacological profile of the muscarinic potentiation of CRH receptor activity was markedly different from that displayed by the muscarinic inhibition of forskolin-stimulated adenylyl cyclase, which could be detected in the same membrane preparations. Moreover, the intracerebral injection of pertussis toxin impaired the muscarinic inhibition of cyclic AMP formation and reduced the Ach stimulation of [35S]GTPgammaS binding to membrane G proteins but failed to affect the facilitating effect on CRH receptor activity. The latter response was also insensitive to the phospholipase C inhibitor U-73122, the protein kinase inhibitor staurosporine and to the inhibitors of arachidonic acid metabolism indomethacin and nordihydroguaiaretic acid. These data demonstrate that in the rat frontal cortex, muscarinic receptors of the M1 subtype potentiate CRH transmission by interacting with pertussis toxin-insensitive G proteins.  相似文献   

15.
Muscarinic receptor subtypes were characterized in fetal (21 day), newborn (3 day), and adult (3 month) rat colon smooth muscle. Saturation binding of the nonselective muscarinic antagonist radioligand [3H]quinuclidinyl benzilate revealed a single class of binding sites in all three age groups. The binding affinities of [3H]quinuclidinyl benzilate were not significantly different among three age groups (KD: 0.19-->0.27 nM). In contrast, the receptor densities (Bmax, fmol/mg protein) showed a significant age-related decrease with fetus (518.9 +/- 7.4) > newborn (480.3 +/- 45.6) > adult (192.4 +/- 32.8). In both newborn and adult tissues, the muscarinic agonist carbachol bound to two sites with high and low affinities. Although the agonist binding affinities in the newborn tissue were not significantly different from those in the adult tissue, the high-affinity binding sites for carbachol were significantly increased in the later (41%-->61%). Addition of guanosine-5'-O-(3-thio)triphosphate (100 microM) abolished apparent high-affinity binding sites in both newborn and adult tissues. Antagonist competition binding in the newborn tissue indicated a homogeneous population of muscarinic M2 receptors. Unlike in newborn tissues, the heterogeneous binding of pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methobromide in adult tissues revealed coexistence of muscarinic M3 (45%) and M2 (55%) receptors. In accordance, activation of muscarinic receptors in the adult tissue stimulated synthesis of inositol 1,4,5-trisphosphate. These results suggest maturational changes of muscarinic receptor subtypes and their coupling to G proteins in rat colonic smooth muscle. These changes may account, at least in part, for developmental alterations of functional responses in colonic smooth muscle.  相似文献   

16.
This investigation was undertaken to characterize the muscarinic receptor subtypes involved in methacholine-induced vasodilation, vagal bradycardia, neurally-evoked sudomotor responses and sympathetic muscarinic ganglionic transmission in anesthetized cats. Dose-response curves were constructed using the putatively selective antagonists pirenzepine (M1), gallamine (M2) and 4-DAMP (M3: 4-diphenyl-acetoxy-N-methylpiperidine) and compared with the non-selective blocker, atropine. Methacholine hypotension and evoked sudomotor responses exhibited an M3 muscarinic receptor profile with the following potency relationships: atropine > or = 4-DAMP > pirenzepine > gallamine. Vagal bradycardia (M2) was antagonized by gallamine and exhibited a lower relative sensitivity to 4-DAMP when corrected for atropine effect. Pirenzepine was inactive in inhibition of bradycardia but was highly potent against transmission in the sympathetic ganglion (M1) with the following potency relationships: atropine > or = pirenzepine > 4-DAMP > gallamine. In comparison with atropine, 4-DAMP exhibited a significantly lower potency for M1 and M2 muscarinic receptors as compared to its effect on the M3 muscarinic receptor subtypes.  相似文献   

17.
The effect of vasopressin and oxytocin on the contractile activity of preparations isolated from the feline gastric corpus wall was investigated. Vasopressin (1.5 x 10(-9)-2.1 x 10(-7) M), but not oxytocin, evoked concentration-dependent tonic contractions only of longitudinal muscle strips. At the same time, vasopressin (1.5 x 10(-9)-2.1 x 10(-7) M) potentiated the magnitude of amplitudes, but not the frequency, of spontaneous contractions. Both the vasopressin V1 receptor antagonist d(CH2)5-(Me)2-Tyr-AVP and the predominantly vasopressin V2 receptor antagonist d(CH2)5, D-Ile2, Ile4-AVP, the non-selective muscarinic receptor antagonist, atropine, the predominantly selective muscarinic M1 receptor antagonist, pirenzepine, the predominantly selective muscarinic M2 antagonist, methoctramine, the predominantly selective muscarinic M3 receptor antagonist, para-fluoro-hexahydro-siladifenidol, and the calcium channel blocker, nifedipine, but not the ganglion blocking agent, mecamylamine, depressed or blocked the tonic contractions induced by vasopressin. Among the antagonists, only atropine and nifedipine inhibited the spontaneous contractions. On the other hand, the anticholinesterase, physostigmine, potentiated both the vasopressin-induced tonic and spontaneous contractions. With regard to the receptors, the vasopressin-induced tonic contractions are mediated at least in part through vasopressin V1 and V2 receptors, non-selective muscarinic and selective muscarinic M1, M2 and M3 receptors. The increase in amplitudes of spontaneous contractions is mediated only via-nonselective muscarinic receptors. Vasopressin receptors appear to be located mostly pre-synaptically, although the direct effect of vasopressin on post-synaptic receptors cannot be excluded. The pA2 values suggests rather V1a than V1b vasopressin receptor subtype involvement in tonic contractions vasopressin had produced. The tonic as well as spontaneous contractions are calcium-dependent. In addition, these results point to the existence of non-selective muscarinic receptors, which participate in the regulation of both tonic and spontaneous contractions, while muscarinic M1, M2 and M3 receptors subserve only the tonic contractions.  相似文献   

18.
Presynaptic modulation of [3H]GABA release was examined using rat cerebral cortical slices. In vitro addition of carbachol, a muscarinic receptor agonist, resulted in a significant suppression of the release of [3H]GABA evoked by high potassium (50 mM) stimulation in a dose dependent manner, while noradrenaline, isoproterenol, dopamine, 5-hydroxytryptamine, histamine and glutamic acid had no significant effect on the evoked release of [3H]GABA. This suppressive effect of carbachol was antagonized invariably by atropine. Furthermore, it was found that the suppressive action of carbachol could be antagonized by pirenzepine, a selective M1 muscarinic receptor antagonist, but not by AF-DX 116 and 4-DAMP, M2 and M3 receptor antagonists, respectively. These results suggest that the release of GABA from cerebral cortical GABA neurons may be modulated by presynaptic M1 muscarinic receptor.  相似文献   

19.
Muscarinic receptors in the spinal cord have been shown to mediate antinociception and alter blood pressure. Currently, there is much interest in identifying which muscarinic receptor subtypes regulate these functions. Toward that end, this study aimed to identify and localize the muscarinic receptor subtypes present in spinal cord using in vitro receptor autoradiography with [3H]-pirenzepine and [3H]-N-methylscopolamine. The results showed that M2 binding sites were distributed throughout the dorsal and ventral horns, whereas M3 binding sites were localized to laminae I to III of the dorsal horn. Only background levels of M1 binding sites were detected. Saturation binding assays using [3H]-pirenzepine in spinal cord homogenates confirmed the absence of M1 receptors. Competition membrane receptor assays using [3H]-N-methylscopolamine and the unlabeled antagonists pirenzepine, 11-2[(-[(diethylamino)methyl]-1-piperidinyl)-acetyl]-5, 11-dihydro 6H-pyrido(2, 3-b)(1, 4) benzodiazepine-one, methoctramine, and methoctramine in combination with atropine corroborated the autoradiographic findings and also revealed the presence of M4 binding sites. The finding that M2 and M3 binding sites were localized to the superficial laminae of the dorsal horn where nociceptive A delta and C fibers terminate suggests the possibility that either or both of these muscarinic receptor subtypes modulate antinociception. The present demonstration of M4 binding sites in spinal cord is consistent with the possibility that M2 and/or M4 receptors are involved in the regulation of blood pressure at the spinal level.  相似文献   

20.
Fractional [3H]acetylcholine (ACh) release and regulation of release process by muscarinic receptors were studied in corpus striatum of young and aged rat brains. [3H] Quinuclidinyl benzilate (QNB) binding and carbachol stimulated phosphoinositide turnover, on the other hand, were compared in striatal, hippocampal and cortical tissues. High potassium (10 mM)-induced fractional [3H]ACh release from striatal slices was reduced by aging. Although inhibition of acetylcholinesterase with eserine (20 microM) significantly decreased stimulation-induced fractional [3H]ACh release in two groups of rats, this inhibition slightly lessened with aging. Incubation of striatal slices with muscarinic antagonists reversed eserine-induced inhibition in fractional [3H]ACh release with a similar order of potency (atropine = 4-DAMP > AF-DX 116 > pirenzepine) in young and aged rat striatum, but age-induced difference in stimulated ACh release was not abolish by muscarinic antagonists. These results suggested that fractional [3H]ACh release from striatum of both age groups is modulated mainly by M3 muscarinic receptor subtype. Although both muscarinic receptor density and labeling of inositol lipids with [myo-3H]inositol decreased with aging, carbachol-stimulated [3H]myo inositol-1-fosfat (IP1) accumulation was found similar in striatal, cortical and hippocampal slices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号