首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 78 毫秒
1.
本文对求解无约束规划的超记忆梯度算法中线搜索方向中的参数,给了一个假设条件,从而确定了它的一个新的取值范围,保证了搜索方向是目标函数的充分下降方向,由此提出了一类新的记忆梯度算法.并在去掉迭代点列有界和广义Armijo步长搜索下,讨论了算法的全局收敛性,且给出了结合形如共轭梯度法FR,PR,HS的记忆梯度法的修正形式,数值实验表明,新算法比Armijo线搜索下的FR,PR,HS共轭梯度法和超记忆梯度法更稳定、更有效.  相似文献   

2.
为有效求解大规模无约束优化问题,本文基于HS方法和PRP方法,提出了一类新的混合共轭梯度法。该方法在每步迭代中都不依赖于函数的凸性和搜索条件而自行产生充分下降方向。在精确搜索下,本文算法将还原为标准的PRP方法。在适当的条件下,获证了该法在Armijo搜索下,即使求解非凸函数极小化的问题,算法也具有全局收敛性。同时,数值实验表明本文算法可以有效求解优化测试问题。  相似文献   

3.
Armijo型线搜索下一种共轭梯度法的收敛性   总被引:1,自引:0,他引:1  
对无约束非线性规划问题,本文分别在两种不同的Armijo型线搜索下证明了Liu-Storey共轭梯度法的所有搜索方向都是充分下降的,并进一步证明了该算法是全局强收敛的。对另一种放松了函数值下降条件可以获得更大步长的Armijo型线搜索,本文还证明了该算法是全局强收敛的。  相似文献   

4.
本文对广义共轭梯度法给出了两个简单的收敛条件,这两个条件比[1]的条件弱,并据此给出了两族模型算法和两个特定算法,最后证明了它们的收敛性。  相似文献   

5.
对无约束规划问题,本文提出了结合Armijo步长搜索规则的一类带误差项的记忆梯度求解算法,并在目标函数的梯度一致连续的条件下,证明了算法的全局收敛性。同时给出带误差项的结合拟-Newton方程的记忆梯度算法。数值例子表明算法是有效的。  相似文献   

6.
共轭梯度法是求解大规模无约束优化问题的有效方法之一,其研究十分活跃.本文给出了一个新的共轭梯度法公式,新公式在精确线搜索下与DY公式等价.基于新公式,采用Wolfe非精确线搜索确定步长,本文设计了一个新的共轭梯度算法,并证明了新算法的下降性和全局收敛性.数值试验结果表明所设计新算法是有效的.  相似文献   

7.
为有效求解大规模无约束优化问题,本文基于RMFI共轭梯度法,结合Zhang H.C.非单调线搜索步长规则,提出了一类新的共轭梯度算法.在适当的条件下,证明了新算法的全局收敛性.数值算例表明,新算法比Zhang H.C.非单调规则下的标准RMFI方法收敛速度更快,更有效.同时,本文进一步研究了Zhang H.C.非单调线搜索步长规则的一个基于强迫函数的拓展模型,并从理论上证明了基于此拓展模型的新算法的全局收敛性.  相似文献   

8.
我们提出了两种Armijo型线搜索,进而证明了这两种Armijo型线搜索可保证共轭下降法的下降搜索方向的充分下降性。并在这两种Armijo型线搜索下得到共轭下降法的收敛性结果。  相似文献   

9.
为有效求解大规模无约束优化问题,本文基于信赖域技术和修正拟牛顿方程,同时结合Zhang H. C.策略和Gu N. Z.策略,设计了一种新的非单调共轭梯度算法,应用信赖域技术保证了算法的稳健性和收敛性,并给出了算法的全局收敛性分析.在适当条件下,证明了该算法具有线性收敛性.数值实验表明新算法能够有效求解病态和大规模问题.与单独结合其中一种非单调策略的算法相比,新算法需要较少的迭代次数和运行时间,利用其得到的函数值与最优值更接近.  相似文献   

10.
共轭梯度算法由于其迭代简单和较小的存储在求解大规模无约束优化问题中起着特殊的作用.本文基于信赖域技术和修正拟牛顿方程,结合Zhang非单调策略,设计了一种新的求解无约束最优化问题的基于信赖域技术的非单调非线性共轭梯度算法.该算法每次迭代自动产生信赖域半径,并通过求解一个简单的子问题得到下一个迭代点,信赖域技术的应用保证...  相似文献   

11.
谱共轭梯度法含有两个方向调控参数,是求解无约束优化问题的一类有效方法.本文给出一对参数公式以构建新的谱共轭梯度法,该方法在精确线搜索下与标准FR方法等价,在Wolfe线搜索下具有类似标准DY方法的内在性质.我们证明了采用Wolfe线搜索的新算法在每一次迭代中均产生下降方向,并且具有全局收敛性.数值实验结果表明,新算法数值稳定、有效,适合于求解大规模无约束优化问题.  相似文献   

12.
共轭梯度法的全局收敛性   总被引:5,自引:0,他引:5  
探讨了在强Wolfe搜索规则下,与βk^PR相关的算法的收敛性,在不需要假设目标函数为凸的情况下,证明了充分下降及算法的全局收敛性。  相似文献   

13.
本文在共轭梯度不能精确计算的情况下,采用Wolfe或Armijo步长规则研究了带误差项的Dai-Yuan(abbr.DY)共轭梯度法,我们的方法的一个很重要的特征就是步长不一定趋于零。这种特征使得我们的分析对许多实际问题很有用。我们在很一般的假设条件下证明了算法的全局收敛性。最后给出了数值算例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号