共查询到13条相似文献,搜索用时 78 毫秒
1.
本文对求解无约束规划的超记忆梯度算法中线搜索方向中的参数,给了一个假设条件,从而确定了它的一个新的取值范围,保证了搜索方向是目标函数的充分下降方向,由此提出了一类新的记忆梯度算法.并在去掉迭代点列有界和广义Armijo步长搜索下,讨论了算法的全局收敛性,且给出了结合形如共轭梯度法FR,PR,HS的记忆梯度法的修正形式,数值实验表明,新算法比Armijo线搜索下的FR,PR,HS共轭梯度法和超记忆梯度法更稳定、更有效. 相似文献
2.
3.
Armijo型线搜索下一种共轭梯度法的收敛性 总被引:1,自引:0,他引:1
对无约束非线性规划问题,本文分别在两种不同的Armijo型线搜索下证明了Liu-Storey共轭梯度法的所有搜索方向都是充分下降的,并进一步证明了该算法是全局强收敛的。对另一种放松了函数值下降条件可以获得更大步长的Armijo型线搜索,本文还证明了该算法是全局强收敛的。 相似文献
4.
本文对广义共轭梯度法给出了两个简单的收敛条件,这两个条件比[1]的条件弱,并据此给出了两族模型算法和两个特定算法,最后证明了它们的收敛性。 相似文献
5.
6.
7.
为有效求解大规模无约束优化问题,本文基于RMFI共轭梯度法,结合Zhang H.C.非单调线搜索步长规则,提出了一类新的共轭梯度算法.在适当的条件下,证明了新算法的全局收敛性.数值算例表明,新算法比Zhang H.C.非单调规则下的标准RMFI方法收敛速度更快,更有效.同时,本文进一步研究了Zhang H.C.非单调线搜索步长规则的一个基于强迫函数的拓展模型,并从理论上证明了基于此拓展模型的新算法的全局收敛性. 相似文献
8.
我们提出了两种Armijo型线搜索,进而证明了这两种Armijo型线搜索可保证共轭下降法的下降搜索方向的充分下降性。并在这两种Armijo型线搜索下得到共轭下降法的收敛性结果。 相似文献
9.
10.
11.
谱共轭梯度法含有两个方向调控参数,是求解无约束优化问题的一类有效方法.本文给出一对参数公式以构建新的谱共轭梯度法,该方法在精确线搜索下与标准FR方法等价,在Wolfe线搜索下具有类似标准DY方法的内在性质.我们证明了采用Wolfe线搜索的新算法在每一次迭代中均产生下降方向,并且具有全局收敛性.数值实验结果表明,新算法数值稳定、有效,适合于求解大规模无约束优化问题. 相似文献
12.
13.
本文在共轭梯度不能精确计算的情况下,采用Wolfe或Armijo步长规则研究了带误差项的Dai-Yuan(abbr.DY)共轭梯度法,我们的方法的一个很重要的特征就是步长不一定趋于零。这种特征使得我们的分析对许多实际问题很有用。我们在很一般的假设条件下证明了算法的全局收敛性。最后给出了数值算例。 相似文献