首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal cycling resistance of modified thick thermal barrier coatings   总被引:3,自引:0,他引:3  
The thermal cycling properties of several modified thick thermal barrier coatings (TTBC) were studied in three test series in which the maximum coating temperature was fixed to 1000, 1150 and 1300 °C. The modified coating structures were all segmentation-cracked coatings and some of these coatings were surface-sealed. The segmentation-cracked coatings were produced by laser glazing or by using appropriate plasma spray parameters. The sealing treatments were made by using aluminium phosphate or sol–gel-based sealant. In this paper, it was demonstrated that regardless of whether the segmentation-cracked TTBCs were made by using specific plasma spray parameters or by laser glazing, the strain tolerance of the coating improved significantly. Instead, both sealing treatments reduced the thermal cycling resistance of the TTBCs to some degree, especially in the case of aluminium phosphate sealing. Coating microstructures, their mechanical and elastic properties and residual stresses were taken into consideration when estimating the thermal cycling properties and failure modes of the coatings.  相似文献   

2.
Zirconia-based 8Y2O3-ZrO2 and 22MgO-ZrO2 thick thermal barrier coatings (TTBC, 1000 μm), were studied with different sealing methods for diesel engine applications. The aim of the sealing procedure was to improve hot corrosion resistance and mechanical properties of porous TBC coatings. The surface of TTBCs was sealed with three different methods: (1) impregnation with phosphate-based sealant, (2) surface melting by laser glazing, and (3) spraying of dense top coating with a detonation gun. The thicknesses of the densified top layers were 50–400 μm, depending on the sealing procedure. X-ray diffraction (XRD) analysis showed some minor phase changes and reaction products caused by phosphate-based sealing treatment and some crystal orientation changes and phase changes in laser-glazed coatings. The porosity of the outer layer of the sealed coating decreased in all cases, which led to increased microhardness values. The hot corrosion resistance of TTBCs against 60Na2SO4-40V2O5 deposit was determined in isothermal exposure at 650 °C for 200 h. Corrosion products and phase changes were studied with XRD after the test. A short-term engine test was performed for the reference coatings (8Y2O3-ZrO2 and 22MgO-ZrO2) and for the phosphate-sealed coatings. Engine tests, duration of 3 h, were performed at the maximum load of the engine and were intended to evaluate the thermal cycling resistance of the sealed coatings. All of the coatings passed the engine test, but some vertical cracks were detected in the phosphate-sealed coatings.  相似文献   

3.
The Caterpillar approach to applying thick thermal barrier coatings (TTBC) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC sys-tems and to provide information on failure mechanisms. The objective of the Caterpillar program has been to advance the fundamental understanding of thick thermal barrier coating systems. Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness ef-fects on properties, durability, and reliability; and TTBC “aging” effects (microstructural and property changes) under simulated diesel engine operating conditions. Methods to evaluate the reliability and du-rability of TTBCs have been developed to understand the fundamental strength of TTBCs for particular stress states.  相似文献   

4.
激光重熔纳米氧化锆热障涂层的抗热冲击性能   总被引:2,自引:1,他引:1       下载免费PDF全文
采用纳米氧化锆团聚粉末和等离子喷涂技术制备了纳米氧化锆涂层,试验研究了激光重熔工艺参数(激光比能量)对纳米氧化锆涂层抗热冲击性能的影响.结果表明,激光重熔工艺参数对重熔涂层的抗热冲击性能影响显著,采用合适的工艺参数(激光比能量),可以使重熔涂层获得最佳的抗热冲击性能.不同激光重熔工艺参数处理的涂层形成的组织结构不同,使得涂层的抗热冲击性能不同.合适的激光重熔工艺参数下涂层表现出高的抗热冲击性能,主要是因为重熔后的涂层组织结构有利于热应力的释放以及其相结构在高温冲击下具有良好的稳定性.  相似文献   

5.
铝基厚梯度热障涂层制备工艺及性能研究   总被引:1,自引:0,他引:1  
采用单一等离子喷涂法和超音速火焰喷涂与等离子喷涂复合喷涂法在铝质LY12基体上制蔷了总厚度分别为0.6mm、10mm和2.0mm的梯度热障涂层,并对基体界面处的涂层显微结构特征进行了金相组织和扫描电镜(SEM)观察,试验结果表明,采用复合喷涂法制备的2mm厚梯度热障涂层其抗拉强度得到显著提高.达到36MPa.其主要原因是采甩JP5000喷涂粘结底层很好的改善了铝基体与游层之间的界面结合强度。基体界面结合强度高低与两者的紧密接触程度有关。  相似文献   

6.
Conventional thermal spray processes as atmospheric plasma spraying (APS) have to use easily flowable powders with a size up to 100 μm. This leads to certain limitations in the achievable microstructural features. Suspension plasma spraying (SPS) is a new promising processing method which employs suspensions of sub-micrometer particles as feedstock. Therefore much finer grain and pore sizes as well as dense and also thin ceramic coatings can be achieved. Highly porous coatings with fine pore sizes are needed as electrodes in solid-oxide fuel cells. Cathodes made of LaSrMn perovskites have been produced by the SPS process. Their microstructural and electrochemical properties will be presented. Another interesting application is thermal barrier coating (TBC). SPS allows the manufacture of high-segmented TBCs with still relatively high porosity levels. In addition to these specific applications also the manufactures of new microstructures like nano-multilayers and columnar structures are presented.  相似文献   

7.
Columnar-structured thermal barrier coatings, owing to their high strain tolerance, are expected for their potential possibilities to substantially extend turbine lives and improve engine efficiencies. In this paper, plasma spray-physical vapor deposition (PS-PVD) process was used to deposit yttria partially stabilized zirconia (YSZ) coatings with quasi-columnar structures. Thermal cyclic tests on burner rigs and thermal shock tests by heating and water-quenching method were involved to evaluate the thermal cycling and thermal shock behaviors of such kind of structured thermal barrier coatings (TBCs). Evolution of the microstructures, phase composition, residual stresses and failure behaviors of quasi-columnar YSZ coatings before and after the thermal tests was investigated. The quasi-columnar coating obtained had an average life of around 623 cycles when the spallation area reached about 10% of the total coating surface during burner rig tests with the coating surface temperature of ~1250 °C. Failure of the coating is mainly due to the break and pull-out of center columnar segments.  相似文献   

8.
随着航空航天技术的不断发展,不断提高的涡轮前进口温度及恶劣的使用环境对镍基高温合金的使用性能提出了更高的要求。热障涂层是一种应用于涡轮发动机热端部件的表面技术,通过沉积在镍基高温合金表面,降低合金表面的温度。概述了采用传统单层层状氧化钇部分稳定氧化锆热障涂层的优势,包括较低的制备成本、便捷的制备方式及较低的层间热膨胀失配应力。同时,归纳了单层层状热障涂层在高温环境下存在的问题,包括氧化锆相变与烧结造成的涂层失效,以及热膨胀系数和断裂韧性较差的新型陶瓷材料无法直接制备在黏结层表面。在此基础上重点综述了近年来热障涂层先进结构设计的研究进展,包括双层层状结构、柱状结构、垂直裂纹结构及复合结构热障涂层,其中复合结构包括激光表面改性结构、梯度涂层结构及粉末镶嵌结构热障涂层。针对各种先进结构热障涂层,分别从微观结构、热震寿命、涂层内部应力、耐腐蚀性能、抗氧化性能等方面进行了归纳,并总结了各先进结构热障涂层现阶段发展的不足之处。最后展望了热障涂层先进结构设计的发展方向。  相似文献   

9.
To improve gas turbine performance, it is possible to decrease back flow gases in the high-temperature combustion region of the turbo machine by reducing the shroud/rotor gap. Thick and porous thermal barrier coating (TBC) systems and composite CoNiCrAlY/Al2O3 coatings made by air plasma spray and composite NiCrAlY/graphite coatings made by laser cladding were studied as possible high-temperature abradable seal on shroud. Oxidation and thermal fatigue resistance of the coatings were assessed by means of isothermal and cyclic oxidation tests. Tested CoNiCrAlY/Al2O3 and NiCrAlY/graphite coatings after 1000 h at 1100 °C do not show noticeable microstructural modification. The oxidation resistance of the new composite coatings satisfied original equipment manufacturer (OEM) specifications. Thick and porous TBC systems passed the thermal fatigue test according to the considered OEM procedures. According to the OEM specifications for abradable coatings, the hardness evaluation suggests that these kinds of coatings must be used with abrasive-tipped blades. Thick and porous TBC coating has shown good abradability using tipped blades.  相似文献   

10.
Gas turbines provide one of the most severe environments challenging material systems nowadays. Only an appropriate coating system can supply protection particularly for turbine blades. This study was made by comparison of properties of two different types of thermal barrier coatings (TBCs) in order to improve the surface characteristics of high temperature components. These TBCs consisted of a duplex TBC and a five layered functionally graded TBC. In duplex TBCs, 0.35 mm thick yittria partially stabilized zirconia top coat (YSZ) was deposited by air plasma spraying and ~0.15 mm thick NiCrAlY bond coat was deposited by high velocity oxyfuel spraying. ~0.5 mm thick functionally graded TBC was sprayed by varying the feeding ratio of YSZ/NiCrAlY powders. Both coatings were deposited on IN 738LC alloy as a substrate. Microstructural characterization was performed by SEM and optical microscopy whereas phase analysis and chemical composition changes of the coatings and oxides formed during the tests were studied by XRD and EDX. The performance of the coatings fabricated with the optimum processing conditions was evaluated as a function of intense thermal cycling test at 1100 °C. During thermal shock test, FGM coating failed after 150 and duplex coating failed after 85 cycles. The adhesion strength of the coatings to the substrate was also measured. Finally, it is found that FGM coating has a larger lifetime than the duplex TBC, especially with regard to the adhesion strength of the coatings.  相似文献   

11.
采用多种方法制备不同类型的Al2O3-13%TiO2热障涂层,即等离子喷涂常规涂层、纳米结构涂层及激光熔覆纳米结构涂层.在分析三类涂层微观组织的基础上,对其隔热性能进行了比较.结果表明,即等离子喷涂常规陶瓷涂层呈典型的层状堆积特征,纳米结构涂层都为特殊的两相结构,其中部分熔化区由类似的残留纳米粒子组成,等离子喷涂纳米结构涂层的完全熔化区为片层状结构,而相应的激光熔覆涂层的完全熔化区则为细小等轴晶.在相同条件下,等离子喷涂纳米结构热障涂层具有最好的隔热性能,而激光熔覆纳米结构涂层的隔热性能要好于等离子喷涂常规涂层.  相似文献   

12.
Amorphous/nanocrystalline coatings are useful in high strength and wear-resistant applications. In the present study, the microstructural evolution of a nanocrystalline high performance steel coatings developed by different spray processes along with a novel “hybrid thermal spray” technique was studied. The hybrid-spray process combines arc and high-velocity oxy-fuel (HVOF) techniques, in which the molten metal at the arcing tip is atomized and rapidly propelled toward the substrate by HVOF jet. This so-called hybrid concept offers the benefits of productivity of electric arc spray combined with improved coating densities of HVOF. The microstructural characterization of the hybrid-spray coatings was performed by x-ray diffraction, electron microscopy, and differential scanning calorimetry, and then compared with coatings of the similar material developed by plasma-, HVOF-, and arc-spray processes individually. The HVOF- and plasma-spray coatings showed amorphous structures with very fine nanocrystals embedded, whereas hybrid- and arc-spray techniques yielded completely crystalline coatings with grain size in the range of several nanometers. The final microstructures in different spray processes could be attributed to the precursor materials employed, process temperatures, and cooling rates during the deposition process.  相似文献   

13.
铝—硅涂层防护性能的研究   总被引:11,自引:2,他引:9  
采用静态高温氧化、热腐蚀试验以及多种物理分析方法研究了镍基合金上的铝—硅涂层的防护性能。揭示了硅在涂层中的分布形式及其在高温曝置期间的变化情况。指出铝—硅涂层的防护性能明显优于渗铝涂层,而且在本试验范围内随硅含量的增加而提高。这是由于: (a) 铝—硅涂层减轻或防止涂层中“MC碳化物缺口”的出现; (b) 含硅的γ′-相具有优良的抗氧化性能; (c) 1100℃短时间曝置后在Al—Si涂层与基体界面处形成的连续的富硅M_6C“隔层”起扩散屏障的作用。  相似文献   

14.
通过探讨喷涂工艺参数对纳米氧化锆涂层结构和性能影响的规律,使纳米氧化锆未熔颗粒基本上保持原始氧化锆粉末的纳米级晶粒大小,熔化的颗粒则起粘结剂的作用,使涂层内氧化锆颗粒问结合牢固,涂层结构致密。纳米氧化锆热障涂层与常规氧化锆涂层相比导热系数降低,隔热效果得到明显提高。力学试验结果则表明,纳米结构热障涂层在硬度、抗热冲击性能、耐冲击性以及结合强度等方面都明显高于常规粉末制备的涂层。  相似文献   

15.
CO2 continuous wave laser beam had been applied to the laser glazing of plasma sprayed nanostructure zirconia thermal barrier coatings. The effects of luser glazing processing parameters on the surface figuration and microstructure change had been carried out, the microstructure and phase composition of the coatings had been evaluated by the scanning electron microscope (SEM) and the X-ray diffraction (XRD). SEM observation indicates that the microstructure of the as-glazed coating could be altered from single columnar structure to a combination of the columnar grain and fine equiaxed grain with the different laser glazing conditions. XRD analysis illustrates that the predominance phase of the as-glazed coating is the metastable tetragonal phase, and the glazed coating with the single columnar structure has shown the clear orientation in (220) and (400) peaks while the other coatings do not show that.  相似文献   

16.
激光重熔对等离子喷涂热障涂层冲蚀行为影响   总被引:2,自引:2,他引:0       下载免费PDF全文
研究了等离子喷涂和激光重熔ZrO<,2>-7%Y<,2>O<,3>热障涂层的微观结构,同时考察了两种涂层的抗冲蚀性能,并探讨了其冲蚀破坏机理.试验发现,等离子喷涂热障陶瓷涂层呈典型的层状堆积特征;经过激光重熔处理后,涂层表面形成了沿热流方向生长的柱状品重熔区;相对于等离子喷涂试样,激光重熔涂层有较好的抗冲蚀性能;不管等...  相似文献   

17.
Recently great emphases have been placed on material characteristics, such as hardness and toughness in development of protective hard coatings. This work aims to investigate the microstructures and mechanical properties of rather thick Ti-Si-C-N coatings, deposited by a plasma enhanced magnetron sputtering (PEMS). It has been evidently proved that Ti-Si-C-N coatings can effectively enhance hardness due to nanocomposite structure. The composition of the Ti-Si-C-N coatings was quantitatively measured with an electron probe microanalyzer (EPMA). Detailed microstructure of the Ti-Si-C-N coatings was performed by a transmission electron microscopy (TEM). The X-ray diffractometry (XRD) was also used to further identify microstructures. The results indicated that the hardness and microstructures of thick Ti-Si-C-N coatings were strongly affected by the Si contents. A nanocomposite coating with nano grains embedded in amorphous matrix was revealed.  相似文献   

18.
国际公认的重型燃气轮机制造尖端技术之一—热障涂层技术,高温下通常面临CMAS(CaO-MgO-Al2O3-SiO2)腐蚀、氧化、相变与烧结等问题,其抗CMAS腐蚀性等关键性能极大地影响涂层寿命,提高热障涂层的性能刻不容缓。对重型燃气轮机用热障涂层的研究进展与发展趋势进行全面总结与分析。首先介绍国内外重型燃气轮机的现状及发展趋势、热障涂层的系统结构、材料和几种典型的制备工艺,然后针对高温下燃气轮机热障涂层遇到的一些问题,对其隔热性、抗氧化性及抗热震性等关键性能的研究进展进行综述,最后分类详述热障涂层的CMAS腐蚀机理及其防护研究进展。综述热障涂层的几种关键性能,提出热障涂层的性能与其材料、结构及制备工艺密切相关,据此总结归纳提高热障涂层性能的方法,为热障涂层性能的提高提供参考依据,以弥补燃气轮机热障涂层领域目前缺乏这类综述文章的不足。  相似文献   

19.
Plasma‐sprayed 8YSZ (zirconia stabilized with 8 wt% yttria)/NiCoCrAlYTa thermal barrier coatings (TBCs) were laser‐glazed using a continuous‐wave CO2 laser. Open pores within the coating surface were eliminated and an external densified layer was generated by laser‐glazing. The hot corrosion resistances of the plasma‐sprayed and laser‐glazed coatings were investigated. The two specimens were exposed for the same period of 100 h at 900 °C to a salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4). Serious crack and spallation occurred in the as‐sprayed coating, while the as‐glazed coating exhibited good hot corrosion behavior and consequently achieved a prolonged lifetime. The results showed that the as‐sprayed 8YSZ coating achieved remarkably improved hot corrosion resistance by laser‐glazing. Changes in the coatings were studied by scanning electron microscopy (SEM) to observe the microstructure and X‐ray diffraction (XRD) technique to analyze the phase composition. XRD results showed that the reaction between yttria (Y2O3) and V2O5 produced yttrium vanadate (YVO4), leaching Y2O3 from YSZ and causing the progressive destabilization transformation from the tetragonal (t) to monoclinic (m) phase. The external dense layer produced by laser‐glazing restrained the penetration of the molten salt, to a certain extent, into the coating, which led to a relatively low m‐ZrO2 content in the coating after the hot corrosion test. Additionally, the segmented cracks in the coating surface induced by laser‐glazing were helpful to the improvement of strain tolerance of the coating. The two factors were important contributions to the significant enhancement of hot corrosion resistance of the as‐glazed YSZ coating.  相似文献   

20.
CoCrAlY alloy has been widely used as metallic protective coatings or the bond coats in thermal barrier coatings (TBCs) to protect the underlying superalloy from oxidation and hot-corrosion. In this paper, the TBC consisting of yttria stabilized zirconia (7YSZ) ceramic top coat and CoCrAlY bond coat was deposited onto directionally solidified nickel based superalloy DZ 125 by electron beam physical vapor deposition (EB-PVD). The microstructural evolution of the bond coat on this superalloy was investigated after thermal exposure for 100 h at 1050 °C. Due to a significant inward diffusion of Al, Co and Cr from the coating and outward diffusion of Ni, Hf, W and Ti from the substrate, the phase transformation from the Co-based Al-rich β-CoAl phase to the Al-deficient γ-CoNi solid solution phase occurred in the bond coat. Simultaneously, a large amount of Ni-based β-NiCoAl phase was present in the bond coat. In addition, the particles containing substrate strengthening elements Hf and/or W are abundant in the thermally grown oxides (TGO) and within the bond coat. The mechanism for the microstructural evolution is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号