首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
AlSiC电子封装材料及器件的关键指标是膨胀系数、热导率和气密性。不同工艺条件下制备的AlSiC电子封装材料物理性能相差较大。尽管已建立一些理论模型预测AlSiC电子封装材料的膨胀系数和热导率,但由于基体塑性变形、粘接剂类型及含量、粉末尺寸等许多因素影响,理论结果与实验结果相差较大。热循环过程中,基体合金类型、增强体尺寸、预处理方法和热循环次数等明显影响AlSiC电子封装材料的尺寸稳定性。温度循环对AlSiC电子封装材料物理性能的影响尚未见公开报道。  相似文献   

2.
电子封装材料现状与发展   总被引:12,自引:0,他引:12  
本栏目针对新材料,从科研、应用、产业化、市场、经营等角度论述新材料产业的现状和趋势。欢迎各界人士参与讨论,共商新材料产业发展大计。  相似文献   

3.
在当今信息时代,随着便携式计算机、移动通信以及军事电子技术的迅速发展,对集成电路(IC)的需求量急剧攀升,微电子封装技术也迎来了它的高速发展期。微电子封装技术经历了双列直插式封装(DIP)、周边有引线的表面安装式封装和面阵式封装三个发展阶段。在新世纪中,以IC产业为代表的微电子工业的发展,为电子封装行业创造了无限的发展机遇。  相似文献   

4.
电子封装基片材料研究进展   总被引:31,自引:6,他引:25  
阐述了电子封装领域对基片材料的基本要求,分析了电子封装用陶瓷,环氧玻璃,金钢石,金属及金属基合材料的性能特点,论述了电子封装基本的研究现状,并指出了发展方向。  相似文献   

5.
高性能聚苯硫醚电子封装材料   总被引:2,自引:0,他引:2  
本文介绍了高性能电子封装材料对特种工程塑料聚苯硫醚(PPS)树脂的要求,特别是离子含量、树脂分子量(粘度)的要求,并给出了国外PPS电子封装材料的性能指标。  相似文献   

6.
将粒度为F280的SiC颗粒振实后直接无压浸渗液态AlSi12Mg8铝合金,制备出高SiC含量的铝基复合材料,并对其结构和性能进行了研究。结果表明:采用该方法制备的SiC/A1复合材料内部组织结构均匀致密,无明显气孔等缺陷,界面产物主要为Mg2Si,MgO,MgAl2O4;平均密度为2.93 g·cm-3,抗弯强度在320 MPa以上,热膨胀系数为6.14×10-6~9.24×10-6 K-1,导热系数为173 W·m-1·K-1,均满足电子封装材料要求。  相似文献   

7.
电子封装塑封材料中水的形态   总被引:5,自引:0,他引:5  
利用实验和Fick扩散方程模拟塑封材料对水的吸收过程,得到水汽在塑封材料中的扩展系数和饱和浓度,塑封材料中的水分子存在于高分子链围成的微孔洞中,并与高分子聚合物以氢键相连。当塑封材料中水汽浓度达到饱和时,在水分子进入的有效体积内,水汽的密度为标准状态下水蒸气密度的100倍,为液态水密度的8%,这表明在塑封材料中水分子以一种特殊的液态水形态存在。在一定的水汽浓度下,在界面处的微孔洞中水气液两相共存,在两相共存的微孔洞中由于水分子争夺高分子的氢健使高分子与芯片表面的二氧化硅层的结合减弱,逐步扩展形成可以观察到的分层。  相似文献   

8.
详细介绍了SiCp/Cu电子封装材料的主要制备方法及应用情况,目前国内外SiC/Cu电子封装材料的主要制备方法有粉末冶金法、放电等离子烧结法、无压浸渗法、压力浸渗法和反应熔渗法,其中包覆粉末热压烧结法和压力浸渗法是目前研发应用较广泛的两种方法.分析了SiC与Cu之间的界面反应机理,并指明SiCp/Cu电子封装材料的制备要解决的主要问题就是在SiC与Cu之间设置界面阻挡层,进而详细阐述了SiCp/Cu电子封装材料主要界面改性方法及其调控效果,并指出目前应用最好的两种方法是物理气相沉积法和化学气相沉积法.  相似文献   

9.
集成电路用金属铜基引线框架和电子封装材料研究进展   总被引:26,自引:1,他引:25  
陈文革  王纯 《材料导报》2002,16(7):29-30,57
针对集成电路向高密度、小型化、多功能化发展,介绍了国内外传统的和以铜为基复合新型的引线框架和电子封装材料的性能、研究、生产现状以及存在的问题,同时展望了铜合金及其复合的引线框架和电子封装材料的发展趋势。  相似文献   

10.
DBC电子封装基板研究进展   总被引:3,自引:1,他引:3  
综述了DBC电子封装基板的研究进展,介绍了DBC电子封装基板材料的选择、敷电子封装中的使用特点,并展望了DBC电子封装基板的应用前景.  相似文献   

11.
林锋  冯曦  李世晨  任先京  贾贤赏 《材料导报》2006,20(3):107-110,115
微电子集成技术的快速发展对封装材料提出了更高的要求.在传统封装材料已不能满足现代技术发展需要的情况下,新型硅基铝金属复合材料脱颖而出,以其优异的综合性能成为备受关注的焦点.高体积分数硅基体带来的低热膨胀系数能很好地与芯片相匹配,连通分布的金属(铝)确保了复合材料的高导热、散热性,两者的低密度又保证了复合材料的轻质,尤其适用于高新技术领域.重点探讨了硅基铝金属铝复合材料的主要制备技术及其组织性能机理,并对其未来发展作出展望.  相似文献   

12.
铜基封装材料的研究进展   总被引:4,自引:1,他引:3  
具有高导热性的铜基封装材料可以满足大功率器件即时快速大量散热的要求,是一种重要的封装材料.综述了Cu/Mo、Cu/W传统铜基封装材料和Cu/C纤维、Cu/Invar(Mo、Kovar)/Cu层状材料、Cu/ZrW2O8(Ti-Ni)负热膨胀材料及Cu/SiC、Cu/Si轻质材料等新型铜基封装材料的性能特点、制备工艺与问题.指出轻质Cu/Si复合材料将是铜基封装材料中一个新的具有前景的研究方向.  相似文献   

13.
综述了碳化硅增强铝基复合材料的几种主要制备工艺,重点阐述了高能超声半固态复合法制备SiCp/Al复合材料.首先用渗流法制备SiC体积分数高的SiCp/Al预制块,进行SiC预分散,然后将预制块加入处于半固态温度条件下的铝合金熔体中,最后导入超声波进行搅拌.此法很好地改善了增强颗粒与基体之间的润湿性,使SiC在基体中均匀...  相似文献   

14.
具有高粱微观结构多孔SiC的制备与表征   总被引:3,自引:0,他引:3  
高粱经高温热解转化为碳模板, 再经液相渗透技术与熔融硅反应, 生成具有高粱微观结构的多孔SiC材料. 采用XRD、SEM和压汞技术对样品的物相、微观结构以及孔分布进行了研究. 结果表明, 最终的产物主要由β-SiC组成, 且很好地复制了碳模板的微观结构. SiC的平均孔径和孔隙率分别为91.4μm和76.6%, 与碳模板的88.5μm和71.2%相似. SiC的比表面积为33.7m2/g, 与碳模板的比表面积59.4m2/g相比明显降低. 二者相近的表面分维数(SiC为2.73, 碳模板为2.70)也表明SiC很好地保持了碳模板的微观结构. 高粱转化的SiC具有颗粒直径大、孔隙率高等特点.  相似文献   

15.
对国内外有关SiC颗粒增强铝基复合材料摩擦磨损的研究现状进行了系统的综述,分别介绍了内部因素(包括颗粒粒径、颗粒含量、颗粒形貌和基体材料)和外部因素(包括载荷、速度、温度和电流)对SiC颗粒增强铝基复合材料摩擦磨损性能的影响,并总结了SiC颗粒增强铝基复合材料在交通运输、航空航天和电子等领域中的应用。  相似文献   

16.
高硅铝合金电子封装材料以其良好的热物理性能与力学性能,越来越受到材料和电子封装行业研究者的重视,但是其焊接性能与机械性能不理想。铝硅合金梯度板材可解决电子封装材料低膨胀与高机械性能的矛盾,其高硅端热膨胀系数低,导热好,适于裸集成电路;低硅端机械性能高,可焊接,便于精加工和封装,是未来武器装备高集成电路封装构件重要的备选材料。针对这类材料的制备问题,提出了双金属一步式喷射成形技术的概念,并对喷射工艺参数进行了初步的探索研究。2个沉积器的间距可以影响复合板材的外形轮廓与内部硅成分的梯度分布,模拟结果显示间距大于等于40 mm时,出现台阶而且成分变化有突变。  相似文献   

17.
碳化硅陶瓷及其复合材料的热等静压烧结研究   总被引:2,自引:0,他引:2  
本文通过采用热等静压(HIP)这一先进的烧结工艺,研究了Al2O3添加量对SiC陶瓷之显微结构与力学性能的影响。并成功地制备出Si3N4粒子以及SiC晶须补强的SiC基复合材料,结果表明:Al2O3是HIP烧结SiC陶瓷及其复合材料的有效添加剂,当添加3wt%Al2O3时,采用HIP烧结工艺在1850℃温度和200MPa压力下烧结1h就可获得密度分别高达97.3%、99.4%和97.0%的SiC的  相似文献   

18.
采用化学气相渗透法(CVI)制备了二维碳纤维增强碳化硅(C/SiC)陶瓷基复合材料. 基于耦合应力等效模拟系统的开发, 采用摩擦扭矩的变化表征传动过程的摩擦磨损性能. 研究了以传动为背景的高载荷、低转速摩擦磨损行为及机理. C/SiC复合材料以其较低的摩擦扭矩、低的磨损率特别是在高载荷下的较小变形验证了良好的耐磨特性以及承载能力. 相同条件下其磨损率只有Ti合金的1/10~1/20. 低转速下磨损机理以磨粒磨损为主, 高载荷没有引起表面热裂纹.  相似文献   

19.
高体积分数铝碳化硅复合材料研究进展   总被引:1,自引:0,他引:1  
阐述了高体积分数铝碳化硅复合材料的性能及影响因素,重点综述了各种制备方法的研究现状及其优缺点,阐述了目前存在的问题和下一步研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号