首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
玻纤增强ABS复合材料的研究   总被引:2,自引:0,他引:2  
以短切玻璃纤维为改性填料,对通用ABS进行共混改性。结果表明:ABS 玻纤复合材料的拉伸强度、弯曲强度、硬度以及热变形温度都随共混体系中玻纤含量的增加而显著提高,而材料的冲击强度和断裂伸长率却随之下降。此外,玻纤的长径比和共混挤出温度对材料的机械性能也有很大的影响。  相似文献   

2.
采用熔体浸渍工艺制备了长玻纤增强丙烯腈-丁二烯-苯乙烯共聚物(ABS)复合材料,研究了不同长玻纤含量对长玻纤增强ABS复合材料力学性能、动态力学性能和形态的影响。结果表明:随着长玻纤含量的增加,长玻纤增强ABS复合材料的力学性能和动态力学性能逐渐增加;长玻纤在基体树脂中具有良好的分散性。  相似文献   

3.
郭涛  王亮 《塑料工业》2013,41(7):104-107
制备了玻璃纤维增强苯乙烯(St)-丙烯腈(AN)共聚物(AS)复合材料,通过力学性能测试和熔体流动速率测试仪研究了不同牌号的AS树脂、不同单丝直径的玻璃纤维、不同种类和用量的偶联剂、其他树脂和加工温度等对玻纤增强AS材料性能的影响。结果表明,AS树脂中AN含量越高,材料的刚性强度越高,AS树脂的摩尔质量的大小和材料的力学性能没有直接联系;相对单丝直径为13μm的玻纤,10μm和7μm的玻纤制备的增强AS材料力学性能更优异;硅烷偶联剂对玻璃纤维具有良好的表面改性效果,其最佳用量为1%~2%(质量分数);聚甲基丙烯酸甲酯(PMMA)树脂可改善材料的力学性能,苯乙烯接枝改性增韧剂(S-g-M)的添加则起到了明显的增韧作用;加工温度240℃比220℃下制备的增强材料的力学性能更优,而且前者的玻纤分布更为均匀。  相似文献   

4.
以丙烯腈-丁二烯-苯乙烯共聚物(ABS)为基体,加入玻纤(GF)制备高性能ABS/GF复合材料,研究了自制的丙烯酸酯聚合物对该复合材料的力学性能及外观的影响。结果表明,该相容剂的加入,使得玻纤增强ABS复合材料的拉伸强度、弯曲强度及缺口冲击强度等性能明显提高,同时,还能明显减少浮纤,提高复合材料的光泽度。扫描电子显微镜(SEM)照片显示,该相容剂与玻纤的相容性良好,并趋向于分布在材料表面。  相似文献   

5.
选取丙烯腈-丁二烯-苯乙烯共聚物(ABS)接枝马来酸酐(ABS-g-MAH)、聚苯乙烯接枝马来酸酐(PS-g-MAH)和苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯共聚物(SAG)等界面相容剂,改进聚乳酸(PLA)/ABS复合材料的界面相容性。结果表明:SAG能够有效改善复合材料的界面相容性,提高复合材料的力学性能、热稳定性和耐热性,同时使PLA/ABS的储能模量(G’)、损耗模量(G’’)和复数黏度(η*)增大。SAG添加量为3%时,复合材料的拉伸强度和无缺口冲击强度分别为57.3 MPa和35.4 kJ/m2,相比未添加界面相容剂分别提高87%和116%。  相似文献   

6.
用短切芳纶1414(PPTA)对丙烯腈-丁二烯-苯乙烯共聚物(ABS)树脂进行增强改性,利用扫描电镜、热失重分析和力学性能测试等方法分析了ABS/PPTA复合材料的断面形态结构、热性能和力学性能。结果表明:当PPTA用量为5份时,ABS/PPTA复合材料的拉伸强度和拉伸模量分别比纯ABS树脂提高了11%和29%,弯曲强度和弯曲模量分别增至78.8MPa和2.9GPa;PPTA可增强ABS树脂在高温时的热稳定性,降低最大失重速率并,提高残炭量。  相似文献   

7.
采用熔体浸渍工艺制备了高性能丙烯腈-丁二烯-苯乙烯共聚物(ABS)复合材料,利用动态热机械分析仪(DMA)对长玻纤增强ABS复合材料进行动态力学性能测试和表征,结果表明:玻纤含量和扫描频率对长玻纤增强ABS复合材料的动态力学性能有一定程度的影响,长玻纤增强复合材料的储能模量随着玻纤含量的增加而逐渐增加,复合材料的损耗因子随着扫描频率的增加而降低,同时采用Arrhenius方程计算长玻纤增强ABS复合材料在α转变时的分子运动活化能。另外,还研究了玻纤含量对长玻纤增强ABS复合材料力学性能的影响。  相似文献   

8.
以丙烯腈-丁二烯-苯乙烯共聚物(ABS)及碱式硫酸镁晶须为原料,以环氧树脂(ER)和苯乙烯-马来酸酐共聚物(SMA)作为界面相容剂,研究界面相容剂对晶须增强ABS复合材料力学性能及界面粘接的影响.结果表明:加入SMA或环氧树脂,碱式硫酸镁晶须增强ABS复合材料的力学性能明显提高;SMA与环氧树脂同时加入具有明显的协同效果,使复合材料的性能更为优越.当晶须加入质量分数为15%时,复合材料的拉伸强度、弯曲强度、冲击强度较未添加界面相容剂时分别提高了26%、19%、198%.  相似文献   

9.
在传统的丙烯腈-丁二烯-苯乙烯共聚物(ABS)乳液接枝聚合中加入甲基丙烯酸甲酯(MMA),制得了改性ABS,然后与聚碳酸酯(PC)共混挤出,制得了PC/改性ABS复合材料。研究了MMA用量对PC/改性ABS复合材料的熔体流动速率(MFR)、维卡软化温度、力学性能的影响。结果表明:随着MMA用量的增加,PC/改性ABS复合材料的MFR、拉伸强度、弯曲强度和缺口冲击强度均先升高后降低。当MMA质量分数为20%时,PC/改性ABS复合材料的拉伸强度和弯曲强度均达到最大,分别为48.9 MPa和63.2 MPa;当MMA质量分数为30%时,PC/改性ABS复合材料的缺口冲击强度为41.0 kJ/m2;当MMA质量分数不高于30%时,与PC/ABS复合材料相比,PC/改性ABS复合材料的维卡软化温度更高。  相似文献   

10.
研究不同玻璃纤维(GF)填充量和不同处理工艺对PVC/ABS合金力学性能以及维卡软化温度的影响.研究结果表明:随着玻璃纤维添加份数的增加,PVC/ABS合金的拉伸性能和维卡软化温度有不同程度的提高,缺口冲击强度有所下降.其中经硅烷偶联剂改性过的玻璃纤维力学性能和维卡软化温度都会好于未改性的玻璃纤维.  相似文献   

11.
采用熔体浸渍技术制备了长玻璃纤维母料(LGF/PP-g-MAH/PP)增强聚丙烯(PP)复合材料(LGF/PP)。通过双螺杆挤出机制备了同等配比的短玻纤增强聚丙烯(SGF/PP)复合材料。研究了LGF含量、环氧树脂(EP)和固化剂(2E4MZ)对LGF/PP复合材料的力学性能影响。结果表明:当LGF质量分数为35%~40%时,LGF/PP的综合力学性能最好,且明显优于同样组成的SGF/PP复合材料。EP和含固化剂(2E4MZ)的EP对LGF/PP复合材料的力学性能提高有一定的作用。SEM照片分析表明:EP的加入能改善玻纤与聚丙烯基体的界面粘接。  相似文献   

12.
以不饱和聚酯树脂短玻纤为主的模压成型团料(BMC)与不饱和聚酯树脂浸渍长玻纤以上下复合方式能得到高性能、高外观质量的井盖材料,研究了在制备过程中物料的捏合时间对物料性能的影响,确定短纤维料和长纤维料在质量比为4:6时性价比最好,并基于有限元分析研究井盖的力学性能。  相似文献   

13.
玻璃纤维增强MC尼龙复合材料的力学性能   总被引:3,自引:2,他引:1  
考察了玻璃纤维增强MC尼龙(GFRMCN)中玻璃纤维的表面处理及加入量对力学性能的影响。并用SEM对GFRMCN材料界面及其对力学性能的影响进行了研究。结果表明:使用KH550作偶联剂对GFRMCN复合材料是很有效的;当玻纤加入40%时,拉伸强度比基体提高322%,拉伸模量提高152%,弯曲强度提高743%,弯曲模量提高了117%。而缺口冲击强度提高了162%,根据材料的制备工艺特点,玻纤的加入量以30%~40%为宜,既保证有良好的综合力学性能,又具有很好的工艺操作性。  相似文献   

14.
玻纤增强PP热塑性片材的制备及力学性能研究   总被引:1,自引:0,他引:1  
采用熔融浸渍法制备了玻璃纤维毡增强聚丙烯(PP)热塑性复合片材;通过在PP中加入复合改性PP改善了基体与增强纤维间的相容性;考察了相容剂、PP种类及玻纤毡种类对复合片材的影响。结果表明,相容剂的加入可使复合片材的拉伸强度提高29%、拉伸模量提高23%、弯曲强度提高42%、弯曲模量提高25%;高熔体质量流动速率PP可使片材的弯曲与冲击性能进一步改善。连续玻纤毡和长玻纤毡增强PP复合片材,前者综合力学性能良好,而后者则冲击强度较弱、弯曲性能加强。  相似文献   

15.
在自制装置中用硅烷偶联剂KH550对长玻纤(LGF)进行表面处理后,采用熔融共混法制备了尼龙66/长玻纤复合材料。采用微机全自动热膨胀系数测定仪记录了玻纤增强尼龙66复合材料的热膨胀曲线,分析了玻纤含量、温度对复合材料热膨胀系数的影响,结果表明,随着玻纤含量的增加,复合材料的热膨胀系数显著下降,最大降低了74.2%;随着温度的升高,复合材料的热膨胀系数先增大后减小最后趋于平衡,转折温度在37℃左右。测试了复合材料的力学性能,结果显示复合材料的拉伸强度、弯曲强度和缺口冲击强度随玻纤含量的增加而大幅度提高,最大分别增加了173%、186%和283%。通过扫描电镜观察到玻纤嵌入尼龙66基体中,与尼龙66形成了良好的界面黏结。  相似文献   

16.
采用自制的浸润装置,以PET浸渍长波纤,经切粒后得到长度为6mm的长纤维增强PET预浸料切片,经一定温度热处理,可得到长纤增强PET复合材料。研究了注塑样条中玻纤含量对其力学性能及玻纤长度分布的影响,并采用SEM观察了长玻纤增强PET注塑样条的断面形貌。结果表明,复合材料力学性能随玻璃纤维含量的提高均有不同程度的提高,当玻纤的质量分数在40%~50%时,力学性能基本达到最佳,且由本方法制备的长玻纤增强PET复合材料的力学性能已达到并超过了国外同类产品的水平。  相似文献   

17.
通过熔融挤出的方式制备了玻璃纤维增强改性聚苯醚材料(mPPE)。探讨了自制界面改性剂LJ01含量对mPPE的力学性能和热氧老化性能的影响。研究发现:LJ01能明显改善mPPE中树脂材料与玻璃纤维的界面结合能力,mPPE的机械性能和热氧老化性能均得到了显著的改善,当LJ01用量达到3 phr时,热氧老化后的缺口冲击强度保持率在92%以上。  相似文献   

18.
采用长玻纤连续添加和短切玻纤制备了玻纤增强尼龙6(PA6)复合材料。主要考察了玻纤含量、玻纤种类以及挤出工艺条件对复合材料力学性能的影响,并利用扫描电子显微镜对复合材料的冲击断面和拉伸断面及玻纤形态进行了观察。结果表明,采用短切玻纤加入时,玻纤含量对GF/PA6复合材料的力学性能影响很大。随玻纤含量的增加,复合材料的力学性能越来越高,断裂伸长率变低。加工工艺参数对复合材料的力学性能有影响。采用长玻纤连续添加时,玻纤的添加位置对复合材料的性能影响不大。在玻纤含量相同时,采用长玻纤连续添加得到的材料力学性能明显优于采用短切玻纤时的性能。玻纤能均匀地分散在PA6基体中,玻纤的保留长度和长度分布对复合材料的性能有直接影响。  相似文献   

19.
通过螺杆挤出法制备了玻璃纤维增强聚丙烯(GFRPP)复合材料。利用电子万能试验机对复合材料的力学性能进行了测量,并对实验结果进行了分析。结果表明:随着GF用量的增加,GFRPP复合材料的拉伸强度和冲击强度也相应增大,且12 mm长玻纤的复合材料比6 mm的高;随着GF用量的增加,GFRPP复合材料的断裂伸长率呈先增大再减小的趋势,且12 mm长玻纤的复合材料比6 mm的小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号