首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用混合捕收剂浮选含金黄铁矿矿石   总被引:1,自引:0,他引:1  
二硫代碳酸盐(黄药)是在硫化矿的浮选中使用最为广泛的捕收剂.最近研究了三硫代碳酸盐(TTC)捕收剂的应用.本研究主要集中在十二烷基三硫代碳酸盐(C12-TTC)与异丁基黄原酸钠(SIBX)的混合物对从氰化尾矿中浮选含金黄铁矿、伴生金和铀浮选的影响.试验结果表明,使用混合捕收剂比单一捕收剂SIBX浮选捕收金和铀的效果要好,而硫的回收率差别不大.浮选精矿的矿物学分析结果表明,金和铀与油母岩关系密切.因此,金和铀回收率的提高很可能是由于油母岩回收率的提高,而不是由于黄铁矿浮选引起的.通常在金的浮选回路中铀的回收率较低,而这种浮选机理提供了铀最大浮选回收的可能性.  相似文献   

2.
为提升某含硫-碳酸盐铀矿石中铀的浸出率,同时控制黄铁矿的氧化浸出,分别采用加压及常压碱浸工艺对该铀矿石进行浸出,考察粒度、温度、碳酸钠用量、空气分压对黄铁矿和铀浸出率的影响.结果表明,当浸出温度、碱用量、氧气分压和粒度分别为150℃、16%、0.7 M Pa和-74μm时,黄铁矿和铀浸出率分别为23.63% 和81.6...  相似文献   

3.
以湖北大冶含铜钴硫精矿为原料,分别研究了硫精矿、硫精矿氧化焙烧渣和硫精矿氧化-还原焙烧渣中铜、钴的同步浸出行为,考察了浸出温度、浸出时间、固液比等工艺参数对铜、钴浸出的影响。结果表明,硫精矿氧化-还原焙烧渣中的铜、钴最易被浸出,浸出条件为:浸出温度70 ℃、浸出时间4 h、固液比1∶5,此时铜和钴浸出率分别为91.46%和65.84%; 采用氧化-还原焙烧-浸出-磁选联合流程处理硫精矿时,可获得铁品位62.31%、回收率68.26%的铁精矿,该工艺实现了硫精矿及焙烧渣中铜、钴、铁资源的综合回收。  相似文献   

4.
赵葆芬 《铀矿冶》1993,12(2):92-92
1992年第5期上刊登了该文,作者为等。文章介绍了在加压釜高温浸出各种含锌精矿和中间产品时,原料中所含硫化物硫约有27%—90%转化成元素硫,元素硫在水-石灰介质中处理可再回收。作者研究了加压釜高温浸出合格锌精矿(含Zn48%以上)的固体渣,以及加压釜高温浸出混合铜锌精矿和铜铅精矿浸出渣的水力旋流器的底流。  相似文献   

5.
文中介绍了从复杂硫化-氧化矿石浮选的精矿(含锡0.59%、砷7.21%、铜9.61%)中细菌浸出砷和铜的研究结果,并引述了有关从砷黄铁矿中浸出砷的机理的某些资料。细菌是用在含锡精矿的悬浮体中培育出的氧化铁硫杆菌(Thiobacillus ferrooxidans)。应当指出的是,影响从合锡精矿中浸出砷的速度及完全浸出的因素很多:如原料的粒度、pH值、溶液的温度、固液比、溶液搅拌时间、浸出剂(硫酸铁和氧化亚铁)的供给等。研究结果证明,用氧化铁硫杆菌能把砷从含锡的精矿中完全脱除,且可避开铜进行选择性的浸出。  相似文献   

6.
针对刚果(金)某高钙镁-硫氧混合型铜钴矿进行了选冶联合试验研究,并对原矿直接浸出、浮选先硫后氧-氧化粗精矿不精选入浸、浮选先硫后氧-氧化粗精矿精选入浸三种工艺进行了技术和经济比较。结果表明:浮选先硫后氧-氧化粗精矿不精选入浸工艺的铜、钴选冶综合回收率最高,分别为73.28%和62.34%,浮选先硫后氧-氧化粗精矿精选入浸工艺的综合经济效益最好。此外,浮选尾矿通过磁选作业可使钴的选矿总回收率增加7.15%。  相似文献   

7.
针对云南某选厂浮选硫精矿中的金以细粒包裹体状赋存于黄铁矿中的性质,采用重浮-焙烧-浸出工艺回收硫精矿中的金、铁、硫.实验结果为:硫以二氧化硫形式回收,回收率为98.24%;金的浸出率为85.48%;浸渣铁品位为60.48%,回收率为98.44%.  相似文献   

8.
尚衍波 《现代矿业》2010,26(11):23-25
对硫、银、锡含量较高的玻利维亚某重选选锡尾矿进行了有价元素回收的试验研究,确定了以浮选为主、焙烧-氰化为辅的锡、硫、银回收工艺。闭路试验得到了硫品位46.70%、硫回收率97.88%、银品位339 g/t、银回收率73.73%的硫精矿,以及锡品位45.37%、锡回收率52.73%的锡精矿,银的焙烧-氰化作业浸出率为75.10%。  相似文献   

9.
采用原矿浮选-浮选硫精矿焙烧-焙烧渣浸铜-浸铜渣氰化浸金的工艺对湖南某难选金矿进行试验研究,结果表明,铜回收率74.00%;金回收率91.14%;焙烧烟气为SO2,硫回收率95.17%;最终浸出渣为铁精矿品位68.72%、铁回收率86.23%.此工艺可综合回收硫、铜、金、铁四种元素,实现资源的综合利用.  相似文献   

10.
某铀矿石属铀-磷灰石-绿泥石类型,除沥青铀矿外,氟磷灰石和绿泥石为主要含铀矿物,铀与氟磷灰石关系密切。与氟磷灰石密切相关的铀在现有加压碱浸条件下难以浸出。试验所用原矿样直接酸浸,酸用量高达25%。原矿样直接加压碱浸,铀的浸出率只有75.2%。采用选冶联合流程提取铀,即通过浮选将原矿样分成磷酸盐精矿和尾矿两组含铀产品。磷酸盐精矿用酸法浸出,尾矿用加压碱法浸出,浸出时总的铀浸出率为90.5%,且试剂消耗也大幅度降低,效果较好。浮选时以碳酸钠为调整剂,水玻璃和栲胶为脉石抑制剂,环烷酸皂为磷矿物的捕收剂。文中叙述了矿石性质,原矿浸出,浮选分组和浮选产品浸出等数据。  相似文献   

11.
本文介绍了含铀铅锌矿的矿石特性,叙述了无氰浮选工艺试验结果。研究表明,采用先选铅、锌,后选铀的优先浮选流程,技术可行、经济合理。当原矿中含铅2.86%、锌2.47%、铀0.019%时,可获得含铅65.13%、锌4.51%的铅精矿,含锌52.0%、铅1.22%的锌精矿,含铀0.028%的铀精矿。铅精矿、锌精矿和铀精矿的回收率分别为94.87%、87.61%和66.13%。文中还结合试验结果对浮选过程中有关亚硫酸钠的影响、硫化钠的作用及丁基铵黑药(二丁基二硫代磷酸铵)选浮法工艺的实质作了讨论。  相似文献   

12.
刚果(金)某高碳酸盐氧化铜矿酸浸前浮选抛尾试验研究   总被引:2,自引:1,他引:1  
为解决刚果(金)某高碳酸盐氧化铜矿原矿浸出酸耗高、浮选工业指标较差的问题,根据碳酸盐脉石与氧化铜矿物浮选性能差异,采用开路硫化浮选的方法对氧化铜矿物进行选择性富集和对耗酸碳酸盐脉石进行预先抛尾,再使用搅拌酸浸处理浮选粗精矿。结果表明,使用NaHS(1 050 g/t)对矿浆进行硫化,以戊黄药、Z-200和羟肟酸钠按4∶1∶1配合后的组合捕收剂(650 g/t)进行4次开路浮选,得到了铜品位8.16%的粗精矿,回收率达到了94.75%,而耗酸脉石的抛除率则超过80%。对粗精矿在常温常压下进行搅拌浸出,控制浸出过程pH=1.5,搅拌强度200 r/min,浸出2 h,浸出率可达89.75%。采用开路浮选-搅拌浸出联合工艺处理该矿石,在保证总回收率85.04%的情况下,浸出酸耗比原矿酸浸降低80%,搅拌浸出处理量仅为原矿浸出的20%左右,取得了良好的技术经济指标。  相似文献   

13.
我国北方某泥岩型铀矿石泥化严重,矿石中的碳酸盐矿物和石膏含量高,采用常规搅拌直接浸出回收铀时,试剂消耗量大、铀浸出率低、生产成本高。为解决此问题,在浸出之前先对矿石进行了搅拌打散—筛分分级—粗粒堆浸—细粒浮选分组预处理,即将矿石分成+0.15 mm和-0.15mm两个粒级,80%以上的石膏赋存于+0.15 mm粗粒级中,这部分矿石可以不磨矿,采用堆浸法能够回收其中的铀,铀浸出率87.50%;90%以上的碳酸盐矿物赋存于-0.15 mm细粒级中,该粒级以氧化石蜡皂作为碳酸盐矿物浮选的捕收剂,水玻璃作为分散剂和活化剂,采用1次粗选2次精选开路浮选工艺流程处理,可获得-0.15 mm粒级高碳酸盐含铀产品和低碳酸盐含铀产品,高碳酸盐含铀产品作业产率28.72%,CO2含量33.85%,作业回收率84.68%。  相似文献   

14.
针对内蒙古某伴生钨、金型钼矿氧化率高、有用矿物嵌布粒度细、含泥量大的特点,采用硫化矿浮选-氧化钼钨矿浮选-钼钨浮选中矿再选的浮选流程,有效地解决了微细矿泥使浮选过程恶化的难题.对Mo含量为0.29%,WO3含量为0.063%及Au含量为0.56 g/t的原矿,通过浮选可获得Mo和Au含量分别为16.26%和146.0 g/t、回收率为11.55%和53.93%的硫精矿,以及Mo和WO3含量分别为5.07%和1.47%、回收率为64.64%和84.64%的氧化钼钨混合精矿.对氧化钼钨精矿(Au含量约为2.5 g/t)中不计价的金进行氰化浸出,金的回收率在之前硫精矿的基础上又提高15.86%.相对原矿钼、钨、金的总回收率分别为76.19%,84.64%和69.79%,实现了该难选钼矿中钼、钨、金多金属的综合回收.  相似文献   

15.
内蒙古某难选钼-钨-金矿是国内罕见的以氧化钼为主的多金属矿床,有几种不同类型矿石,其中石英岩类型矿石伴生硫化钼、钨和金,具有相当高的综合回收价值。针对该含金氧化钼矿氧化率高、有用矿物种类多、有用矿物特别是金矿物嵌布粒度细、矿石含泥量大的特点,试验采用"辉钼矿浮选-硫浮选-氧化钼钨(钼钨钙矿)浮选-氧化钼钨(钼钨钙矿)精矿浸出"流程综合回收钼、钨和金,在钼钨浮选段,根据矿物性质,对易选钼钨和难选钼钨分别进行回收。辉钼矿浮选采用Na_2SiO_3作调整剂,新型辉钼矿捕收剂Pm为捕收剂;硫浮选采用对金具有强捕收能力的Y-89作捕收剂;钼钨钙矿浮选采用NaOH+Na_2SiO_3为组合调整剂,新型脂肪酸类捕收剂GYWA为捕收剂。对含Mo 1.01%、WO_30.137%、Au 2.45 g/t的原矿,经浮选试验,获得含Mo47.10%、Au 470.6 g/t,回收率为Mo 13.79%、Au 56.77%的辉钼矿精矿;含Mo 6.58%、Au 19.7 g/t,回收率为Mo 9.59%、Au 11.84%的硫精矿;含Mo 18.30%、WO_32.89%,回收率为Mo 72.15%、WO_381.29%的钼钨精矿。钼钨精矿(含Au约10 g/t)中金的作业浸出率为70.67%,对原矿回收率为11.59%。精矿Mo、WO_3、Au的回收率分别为95.53%、81.29%、80.20%,有效实现了多金属资源的综合回收利用。  相似文献   

16.
某硫锌型深海多金属硫化物锌、硫品位分别为20.44%和36.6%,贵金属金、银分别为6.89g/t和141g/t。根据矿石性质,通过硫(自然硫)-锌的优先浮选工艺,先获得自然硫精矿,再获得锌精矿。闭路流程可获得硫品位70.36%、硫回收率23.09%、锌品位14.61%、锌回收率8.34%的自然硫精矿,以及锌品位49.90%、锌回收率85.56%的锌精矿。锌总回收率93.90%。对浮选尾矿进行氰化浸出,样品中的金、银元素选冶总回收率可分别达到83.3%和86.3%左右。  相似文献   

17.
为了实现西藏某铅锌复杂难选矿石的铅、锌和硫的高效分离,采用优先浮选工艺流程对矿样的有用组分进行条件实验,以矿磨细度-74 μm 80%,采用乙硫氮+丁铵黑药为捕收剂,适量石灰+硫化钠硫酸锌为活化剂,浮选时间在4.5 min后,取得了满意的铅产品作业回收率;对铅的浮选尾矿以石灰作为(磁)黄铁矿的抑制剂及pH值调整剂,硫酸铜为活化剂,丁黄药为捕收剂,浮选达到了较高的锌产品回收率;硫粗选实验采用硫酸作为活化剂,丁黄药作为捕收剂获得了满意的硫产品回收率.该实验可获得铅精矿Pb回收率90.09%;锌精矿Zn回收率80.58%;硫精矿S回收率47.49%.从最终精矿产品可以看出,采用铅中矿顺序返回-锌全浮选-锌精矿磁选工艺可获得较好的铅、锌、硫等精矿指标.  相似文献   

18.
在对某低品位难选斑岩型铜钼矿进行矿石性质研究的基础上,采用铜钼(硫)混合浮选-混合精矿脱硫精选-钼铜分离的工艺流程,闭路试验可获得含钼43.62%、钼回收率70.41%的钼精矿、含铜24.25%、铜回收率87.14%的铜精矿以及含硫39.30%、硫回收率79.08%的硫精矿.该试验研究结果可以作为开发利用该铜钼矿的技术依据.  相似文献   

19.
某含金石英脉型金矿石的选矿试验研究   总被引:1,自引:0,他引:1  
某含金石英脉矿属中硫矿石,含金4.41g/t、硫3.86%,采用单一浮选流程可获得品位为56.32g/t的金精矿,回收率93.92%。为直接产出成品金,采用浮选精矿再磨氰化浸出—炭吸附工艺流程,金总回收率为87.91%。  相似文献   

20.
本文叙述了用加压酸浸法从含绿层硅铈钛矿矿石的磁选精矿中浸出铀、钍和稀土的小型和扩大试验结果。在最佳工艺条件下,铀、钍和稀土的浸出率分别为82.9%、86.0%和88.3%,硫酸耗量(按精矿计)降低到180kg/t。为处理这种特殊类型的矿石找到了一条有效的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号