首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
朱永闯  李莉 《广东化工》2011,38(7):59-60
综述了高分子表面活性剂的特性、分类情况,介绍了双亲嵌段型、无规聚合型和接枝型高分子表面活性剂性能特点。并且阐述了亲水性高分子表面活性剂在涂料、油墨、石油化工、造纸、水处理等领域中的应用。  相似文献   

2.
隋卫平  李涛  王党生 《现代化工》2004,24(Z1):90-92
综述了3类高分子表面活性剂的制备及应用情况,涉及由亲水/疏水性单体共聚形成的两亲嵌段共聚物、由表面活性单体制备的无规聚合型高分子表面活性剂和由高分子化学反应接枝制备的接枝型高分子表面活性剂的合成方法及相关的应用情况.特别介绍了天然高分子改性高分子表面活性剂的研究状况.目前高分子表面活性剂的研究热点是开发新品种和新的合成方法,研究其结构与性能的关系,结合实际需要不断开拓新应用领域.  相似文献   

3.
近年来,随着"绿色化学"的呼吁声越来越高,在新型油脂基高分子表面活性剂方面的研究取得一定的进展。本文主要介绍各种新型油脂基高分子表面活性剂的合成方法、性能,以及其研究进展。其中包括非离子型表面活性剂和两性表面活性剂、双子型表面活性剂等新型油脂基高分子表面活性剂的合成方法及应用。  相似文献   

4.
接枝型高分子表面活性剂的合成、性质及应用   总被引:2,自引:0,他引:2  
徐国财 《化工进展》1999,18(2):43-46
介绍了接枝型高分子表面活性剂的合成方法,包括缩聚法,加聚法及高分子化学反应法及其性质,诸如表面,等以及在造纸工业,石油开采,等方面的应用。  相似文献   

5.
高分子表面活性剂的合成与溶液性能研究进展   总被引:5,自引:1,他引:5  
综述了高分子表面活性剂在合成和溶液性质方面的研究进展 ,包括嵌段型和接枝型高分子表面活性剂不同的合成路径和方法 ,高分子表面活性剂在溶液中胶束行为特征和表征方法 ,以及溶液性能基础理论研究方面的进展。  相似文献   

6.
概述了淀粉、纤维素和壳聚糖类天然高分子表面活性剂的研究概况,并展望了其未来发展趋势。通过对天然高分子表面活性剂的介绍,使人们对高分子表面活性剂,尤其是绿色高分子表面活性剂有更多的认识和了解。天然高分子表面活性剂,具有原料可再生、无毒、无污染、易生物降解特点,可广泛应用于食品工业、农业、洗涤剂、化妆品等领域,具有广阔的应用前景。因此以天然高分子为原料的绿色高分子表面活性剂已成为表面活性剂发展的一个重要方向。  相似文献   

7.
淀粉基类高分子表面活性剂研究概况   总被引:2,自引:0,他引:2  
以淀粉为原料制备的高分子表面活性剂具有无毒、无污染、易生物降解等特点.可广泛应用于食品工业、农业、洗涤剂、化妆品等领域.是表面活性剂工业一个重要的发展方向。对以淀粉为原料的新型高分子表面活性剂的合成方法和性能进行了综述和介绍。  相似文献   

8.
高分子表面活性剂的合成及其应用   总被引:1,自引:0,他引:1  
综述了高分子表面活性剂的分类及特性功能,介绍了高分子表面活性剂的合成方法以及在日用化学品、造纸、采油、陶瓷等行业的应用.展望了高分子表面活性剂的应用前景.  相似文献   

9.
非离子系高分子表面活性剂的研究进展   总被引:2,自引:0,他引:2  
综述了聚乙烯醇类、聚酯类、纤维素基类和糖基类非离子系高分子表面活性剂的进展过程以及这些非离子表面活性剂的制备反应和一些用途;介绍了非离子系高分子表面活性剂不同于低分子表面活性剂的优良表面活性性能和特有性能,讨论了影响这些性能的内在因素和外在因素以及性能和各种内在因素的关系。  相似文献   

10.
高分子表面活性剂的发展及应用现状   总被引:2,自引:0,他引:2  
王翔  代加林杨梦 《塑料工业》2007,35(B06):22-24,35
综述了现阶段高分子表面活性剂的类别及特性,高分子表面活性剂的合成及应用。主要介绍了有机硅、氟烃高分子表面活性剂的发展情况以及高分子表面活性剂在石油工业中的应用。  相似文献   

11.
张婧 《化工进展》1999,18(2):41-42,53
本文介绍聚氯乙烯在建材行业的应用情况-生产塑料管材,板材,塑料门窗类家庭用品以及其他亲型用途,为我国塑料建材行业中聚氯乙烯树脂的发展方向提供有价值的技术信息。  相似文献   

12.
覃月宁  吴伯麟  倪媛 《塑料工业》2006,34(Z1):259-261
采用机械球磨法制备了不同粒径的氢氧化铝,用非离子表面活性剂改性阴离子表面活性剂制备了不同的表面活性剂,利用湿法工艺对氢氧化铝进行表面改性,进行了比表面积、吸油值、SEM等性能测定。研究发现,改性后的氢氧化铝吸油量降低,明显改善在聚合物单体中的分散性;用直链的非离子表面活性剂改性硬脂酸的复合改性剂对阻燃剂氢氧化铝改性效果最好,并可用于碳酸钙、滑石的表面改性;用含芳香烃的非离子表面活性剂改性硬脂酸的复合改性剂也较好。  相似文献   

13.
This paper deals with a thermo-responsive poly(N-isopropylacrylamide) (NIPA) gel containing a polymeric surfactant poly(2-(methacryloyloxyl)decylphosphate) (PMDP) which shows rapid volume change above phase transition temperature at ca. 34 degrees C. Based on the measurements of dye-solubilization, it was suggested that intra-molecular micelles of the polymeric surfactant PMDP are inside NIPA gel-network. It is concluded that the intra-molecular micelles of polymeric surfactant involving NIPA chains may play crucial role in the rapid collapse of the NIPA-PMDP gel at the phase transition temperature.  相似文献   

14.
概述了国内外稠油乳化降黏用表面活性剂的研究进展,详细介绍了阴离子表面活性剂、非离子表面活性剂、阴离子一非离子两性表面活性剂及高分子表面活性剂、生物表面活性剂和氟碳表面活性剂等新型表面活性剂在稠油乳化降黏中的应用,评价了各种表面活性剂的优缺点,并提出了稠油乳化降黏用表面活性剂的发展前景。  相似文献   

15.
The membrane-based grey water treatment for grey water reuse and surfactant recovery is presented in this research paper. Grey water from washing machine discharges having turbidity and used surfactant was processed through the polymeric ultrafiltration (UF) membrane to remove the turbidity. The UF treated grey water is further purified by reverse osmosis (RO) membrane for surfactant recovery and water reuse. The surfactant trapped inside the RO spiral wound membrane module is recovered through various membrane physical regeneration techniques such as backwashing, simultaneous backwash–back-flush and ozone back-flush. Among this, backwash–back-flush is found to be effective process for surfactant recovery. The methodology for optimising surfactant recovery is captured by studying effect of various operating parameters such as feed detergent concentration, backwash pressure, backwash temperature and back-flush flow rate. By implementing optimal process conditions, the integrated UF and RO membrane process is able to produce 300 L of reusable pure water and 80 L of concentrated detergent solution and 20 L of turbid water while treating 400 L of grey water discharges. Maximum surfactant recovery of 82% is obtained while treating grey water which consists of 720 ppm of total dissolved solids (detergent) and 45 ppm of surfactant. The extent of UF and RO membrane fouling is determined by measuring the pure water flux before and after the grey water treatment. The membrane performance is found to be stable when membrane is regenerated by backwash–back-flush technique for RO and gravity backwash for UF membrane.  相似文献   

16.
To study the adhesion of the anionic surfactant sodium dodecyl sulfate (SDS) to various materials, a schematic molecular model of SDS was used which optimally correlates with its critical micelle concentration (c.m.c.) values under various conditions. Using the surface tension components and parameters of (a) the SDS apolar and polar moieties and (b) the polymeric surfaces of cellulose and nylon, the energy of adhesion of SDS to these polymeric surfaces as well as to a typical low-energy material (greasy dirt) in the guise of hexadecane was determined. It could be quantitatively shown (using a surface-thermodynamic approach) that SDS, in water, adheres more strongly to the low-energy (greasy dirt) compounds than to the polymeric materials. The c.m.c. of SDS was derived directly from the surface tension components and parameters of its apolar and polar moieties, and the ζ potential of its polar heads. The c.m.c. values obtained using this model correlate well with the published c.m.c. values obtained experimentally at different ionic strengths.  相似文献   

17.
AKD专用高分子表面活性剂的性能研究   总被引:2,自引:0,他引:2  
设计并合成了一种高分子表面活性剂,用FTIR、DSC、GPC分析手段研究了高分子表面活性剂的分子结构,并对其表面张力进行了测定。测试结果显示,4种单体都参与了共聚反应,无均聚物存在,高分子表面活性剂的重均分子量为58 536,数均分子量为16 812,多分散性系数为3.48,说明相对分子质量(简称分子量)的分散程度较小。温度为25℃时,高分子表面活性剂的CMC为0.8 mmol/L,γCMC为50.1 mN/m。当m(高分子表面活性剂)/m(烯酮二聚体)=0.23时,可制备出稳定的烯酮二聚体(AKD)乳液,且该AKD乳液质量占绝干浆质量的0.13%时,浆内施胶度可达200 s以上。用马尔文纳米粒度及Zeta电位分析仪测定出AKD乳液的平均粒径为574.4 nm,Zeta电位为11.16 mV。通过TEM观察,AKD乳胶粒子在高分子表面活性剂的包裹下呈核壳结构,并且形成水包油乳液。该高分子表面活性剂具有良好的表面活性与应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号