首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Melt-spun Zn x Sb3 ribbons were fabricated with weight compositions of x = 3.6, 3.9, and 4.2 through a single-wheel process and were annealed for 2 h at 673 K. The microstructures of the ribbons were investigated using transmission electron microscopy, together with energy-dispersive x-ray analysis. The main structure consisted of β-Zn4Sb3 phase, which mainly coexisted with ZnSb phase for x < 4 and with Zn phase for x > 4. The analyzed composition of the β-Zn4Sb3 phase deviated from the stoichiometric composition of 4:3 for all the ribbons. Nanosized voids and zinc inclusions were randomly distributed throughout the β-Zn4Sb3 phase. The thermoelectric characteristics of the ribbons were revealed by measuring the Seebeck coefficient, electrical conductivity, power factor, dimensionless figure of merit, and thermal conductivity. The power factor and dimensionless figure of merit increase with increasing x and temperature because either the electrical conductivity or Seebeck coefficient increases.  相似文献   

2.
3.
The high-temperature thermoelectric properties of In x Co4Sb12 (0.05 ≤ x ≤ 0.40) skutterudite compounds were investigated in this study. The phase states of the samples were identified by x-ray diffraction analysis and field-emission scanning electron microscopy at room temperature. InSb and CoSb2 were found as secondary phases in samples with x = 0.10 to 0.40. The filling limit of In into the CoSb3 cages of In x Co4Sb12 was in the range 0.05 < x < 0.10. The electrical resistivity, Seebeck coefficient, and thermal conductivity of the In x Co4Sb12 samples were measured from room temperature to 773 K. The Seebeck coefficient of all samples was negative. Reduction of the thermal conductivity by In addition resulted in a high thermoelectric figure of merit (ZT) of 0.67 for In0.35Co4Sb12 at 600 K.  相似文献   

4.
Bi1?x Sb x nanoparticles were prepared by mechanical alloying and compacted using different techniques. The influence of the composition as well as the pressing conditions on the thermoelectric performance was investigated. A strong dependence of the thermoelectric properties on the composition was found, which deviates from the behavior of single crystals. The results indicate a significant change in the band structure of the material induced by the reduced size. The influence of the pressing conditions on the thermoelectric properties also showed composition dependence. The results show that the compacting method has to be chosen carefully.  相似文献   

5.
Novikov  S. V.  Burkov  A. T.  Tang  X.  Yan  Y.  Orekhov  A. S. 《Semiconductors》2019,53(5):583-588
Semiconductors - The results of investigations of the thermoelectric properties of In0.2Ce0.1Co4Sb12.3 compound prepared by the rapid-quenching technique are presented. In the process of...  相似文献   

6.
7.
CoSb3-based skutterudites with substitution of Ni atoms for Co, and substitution of Te and Se atoms for Sb were successfully prepared by solid-state reaction and spark plasma sintering. According to x-ray diffraction analysis the major phase of all the samples had a CoSb3-type structure, although back-scattered electron images showed that small amounts of impurity phases were present in all the samples. The temperature-dependent transport properties were characterized over the temperature range 300–800 K for all the samples. It was found that appropriate substitution with Ni, Te, and Se effectively improved the power factor and reduced the thermal conductivity. As a result, Ni, Te, and Se-tri-doped CoSb3 materials with enhanced thermoelectric figures of merit, ZT, were obtained. The highest ZT was greater than 1.1 at high temperature.  相似文献   

8.
SiC whiskers have been incorporated into Zn4Sb3 compound as reinforcements to overcome its extremely brittle nature. The bulk samples were prepared by either hot-extrusion or hot-pressing techniques. The obtained products containing 1 vol.% to 5 vol.% SiC whiskers were confirmed to exhibit sound appearance, high density, and fine-grained microstructure. Mechanical properties such as the hardness and fracture resistance were improved by the addition of SiC whiskers, as a result of dispersion strengthening and microstructural refinement induced by a pinning effect. Furthermore, crack deflection and/or bridging/pullout mechanisms are invoked by the whiskers. Regarding the thermoelectric properties, the Seebeck coefficient and electrical resistivity values comparable to those of the pure compound are retained over the entire range of added whisker amount. However, the thermal conductivity becomes large with increasing amount of SiC whiskers because of the much higher conductivity of SiC relative to the Zn4Sb3 matrix. This results in a remarkable degradation of the dimensionless figure of merit in the samples with addition of SiC whiskers. Therefore, the optimum amount of SiC whiskers in the Zn4Sb3 matrix should be determined by balancing the mechanical properties and thermoelectric performance.  相似文献   

9.
Kulbachinskii  V. A.  Kytin  V. G.  Zinoviev  D. A.  Maslov  N. V.  Singha  P.  Das  S.  Banerjee  A. 《Semiconductors》2019,53(5):638-640
Semiconductors - Antimony-telluride-based nanocomposite samples containing different weight fractions of graphite (Sb2Te3 + x% graphite, where x = 0.0, 0.5, 1.0, and 2.5%) are synthesized and...  相似文献   

10.
Based on results obtained utilizing combinatorial chemistry techniques to screen the thermoelectric power factor of materials in the system Zn x In y O x+1.5y , several multiphase candidates were down-selected and investigated in terms of their thermoelectric response from room temperature to 1050°C. While the screening experiments suggested that peaks in the power factor occur at relatively high indium oxide content, only the thermoelectric properties of zinc-oxide-rich homologous layered phases in the system (In2O3)(ZnO) k have been well documented, since the phases where k < 3 cannot be easily formed. In the present study, indium-oxide-rich materials in the system In2O3–(In2O3)(ZnO)3 were fabricated and their figures of merit were determined. The results suggest that the indium-oxide-rich phases have improved figures of merit, especially at elevated temperatures, relative to the best performing k phases by combining the high power factor of In2O3 and the low thermal conductivity of (In2O3)(ZnO) k .  相似文献   

11.
12.
13.
The use of microwave energy for materials processing has a major potential and real advantages over conventional heating such as (1) time and energy savings, (2) rapid heating rates (volumetric heating vs. conduction), (3) considerably reduced processing time and temperature, (4) fine microstructures and hence improved mechanical properties and better product performance, and (5) finally lower environmental impact. In this study, we investigated the use of microwave-assisted synthesis to synthesize a series of Co1?x Fe x Sb3 using this novel approach, which gave high quality materials with little or no impurities in a fraction of the time needed for conventional synthesis. X-ray diffraction analysis was used to examine the structure and the lattice parameters of the samples, while scanning electron microscopy with energy dispersive x-ray spectroscopy was used to study the morphology of the compounds. The samples were sintered by spark plasma sintering, and the highest ZT of 0.33 was obtained for x = 0.2 at 700 K.  相似文献   

14.
用两步固相反应法合成了单相的p型BayFeCo3Sb12化合物,并系统地研究了Ba不同填充分数对方钴矿化合物热电性能的影响:化合物载流子浓度强烈地依赖于填充原子的填充分数,随Ba填充分数y的增加,载流子浓度及电导率降低;塞贝克系数随温度T的上升而增加,比CoSb3的塞贝克系数有一定程度的提高,尤其是在中温部分有大幅度提高,得到的最大塞贝克系数由CoSb3的107μVK-1提高到Ba1.0FeCo3Sb12的235μVK-1晶格热导率随Ba的填充分数y的增加而进一步下降,Ba08FeCo3Sb12甚至降到2.2 Wm1K1;Ba08FeCo3Sb12化合物显示最大热电性能指数,在850K左右其最大无量纲热电性能指数ZT值达0.75.  相似文献   

15.
The compound YbAl3 exhibits a very high power factor but also rather a large thermal conductivity, leading to a low figure of merit. The second phase Yb5Sb3 was introduced in the YbAl3 matrix to reduce its thermal conductivity. The composites (YbAl3)1?x (Yb5Sb3) x with x = 0, 0.01, 0.05, 0.10, and 0.20 were synthesized by high frequency induction melting, annealing treatment, and spark plasma sintering. The thermoelectric properties of the composites were evaluated. The composites are of n-type conduction. The pure YbAl3 obtained in this work shows a high power factor of 11,500 μW m?1 K?2 but also a high thermal conductivity of 19.6 W m?1 K?1. However, the existence of Yb5Sb3 compound in the YbAl3 matrix enhances the electrical resistivity and the absolute Seebeck coefficient of the composite, but significantly reduces its thermal conductivity in the temperature range considered, thereby enhancing the figure of merit. The highest ZT value of 0.23 may be obtained in the sample (YbAl3)0.95(Yb5Sb3)0.05 at room temperature, which is apparently higher than that of pure YbAl3.  相似文献   

16.

Experimental results of studying the thermoelectric properties of Co4Sb12, Ce0.1Nd0.5Co4Sb12, and Ce0.5Nd0.1Co4Sb12 prepared by induction melting are presented. The thermoelectric figure of merit ZT of the studied Co4Sb12 is approximately two times higher than ZT of unfilled skutterudites prepared by the conventional solid-phase synthesis method. The figure of merit of Ce0.1Nd0.5Co4Sb12 and Ce0.5Nd0.1Co4Sb12 appears lower than ZT of Co4Sb12 due to the presence of an impurity phase of metal antimony in the first two samples. It is assumed that the thermoelectric properties of filled skutterudites can be significantly improved by optimizing the induction melting method.

  相似文献   

17.
The electrochemical behaviors of nonaqueous dimethyl sulfoxide solutions containing TeIV and SbIII were investigated using cyclic voltammetry. On this basis, Sb x Te y thermoelectric films were prepared by the potentiodynamic electrodeposition technique from nonaqueous dimethyl sulfoxide solution, and the composition, morphology, and thermoelectric properties of the films were analyzed. Sb x Te y thermoelectric films prepared under different potential ranges all possessed smooth morphology. After annealing treatment at 200°C under N2 protection for 4?h, all the deposited films showed p-type semiconductor properties. Sb1.87Te3.13 thermoelectric film, which most closely approached the stoichiometry of Sb2Te3 and possessed the highest Seebeck coefficient, could be potentiodynamically electrodeposited in the potential range of ?200?mV to ?600?mV.  相似文献   

18.
Double-filled skutterudites In x Pr y Co4Sb12, which are currently being investigated for potential applications as thermoelectric materials, have been successfully prepared by inductive melting and annealing. Our results showed that In and Pr double filling effectively improves both electrical conductivity and Seebeck coefficient compared with pristine or single-filled CoSb3, giving rise to a respectable power factor. The largest power factor, 2.33 m Wm?1 K?2, was achieved at 609 K for In0.05Pr0.05Co4Sb12; this value is approximately three times that for In x Co4Sb12 (x ≤ 0.3) skutterudites. These results imply that In and Pr double filling are better than In single filling for efficient improvement of the thermoelectric properties of CoSb3 skutterudite.  相似文献   

19.
We synthesized n-type CeO2/Co0.97Pd0.03Sb3 composites with nanometric grain sizes (200 nm to 300 nm) by spark plasma sintering in order to promote phonon scattering at grain boundaries. Powdered samples were initially obtained by ball milling Co0.97Pd0.03Sb3 together with x vol.% (x = 0, 0.5, 1, 2) of CeO2 nanoparticles. This additive slows down the grain size growth of the skutterudite matrix which occurs during sintering, thereby contributing to phonon scattering. The nanostructured samples display reduced Hall electron concentration compared with that of the reference Co0.97Pd0.03Sb3 because of Fe contamination by the steel balls and vials. However, the electronic transport properties are nearly identical to those of Co0.98Pd0.02Sb3, which allows for comparison with this latter compound. The lattice thermal conductivity is strongly decreased in nano-Co0.97Pd0.03Sb12 (?40% at 300 K). This results in an enhanced (+32%) ZT value peaking at 0.65 at 650 K in nano-Co0.97Pd0.03Sb12 + 2% CeO2 when compared with micro-Co0.98Pd0.02Sb3.  相似文献   

20.
Polycrystalline SnO2-based samples (Sn0.97−x Sb0.03Zn x O2, x = 0, 0.01, 0.03) were prepared by solid-state reactions. The thermoelectric properties of SnO2 doped with Sb and Zn were investigated from 300 K to 1100 K. X-ray diffraction (XRD) analysis revealed all XRD peaks of all the samples as identical to the rutile structure, except for the x = 0.03 sample, which had a small amount of Zn2SbO4 as a secondary phase. We found that the power factor of the x = 0.03 sample was significantly improved due to the simultaneous increase in the electrical conductivity and the Seebeck coefficient. A power factor value of ∼2 × 10−4 W m−1 K−2 was obtained for the x = 0.03 sample at 1060 K, 126% higher than that for the undoped sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号