首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
黄海  王伟 《复合材料学报》2012,29(5):196-202
为了提高复合材料叶片承担载荷的能力, 尤其是承受最大弯矩的叶片根部的承载能力, 研究了遗传算法的优化原理并将遗传算法应用到复合材料叶片根部铺层的优化设计中。针对复合材料层压结构遗传算法优化设计中, 层压结构参数具有离散型的特点, 提出了适合复合材料层压结构遗传算法优化设计的整数编码策略, 以整数来表征层压结构参数。在分析层压结构强度的基础上, 针对结构强度优化的目标构造了可用于遗传算法的适应度函数。同时参考了一定的铺层规则, 在铺层角度限制为工程中常用的四种角度的前提下, 应用遗传算法对叶片根部进行了铺层优化设计。结果表明, 由于遗传算法特有的处理离散型问题的优势, 在叶片根部的铺层优化设计中应用遗传算法是可行和可信的。  相似文献   

2.
风力发电机(简称风车),是一种将风能转化为机械能,电能或热能的转换装置。比较了垂直轴风力发电机与水平轴风力发电机的优势后,对小型H型垂直轴风车叶片的进行了分析,给出了在不同工作环境中的载荷分析,并对叶片的应力计算及校核方法作了讨论,为小型H型垂直轴风车的叶片设计提供了参考。  相似文献   

3.
以1.5MW水平轴风力发电机的叶片作为研究对象,通过测试叶片材料的S-N曲线,分析叶片根部的载荷谱,采用Miner疲劳累计理论对叶片的疲劳寿命进行分析评估,探索大型风电机组叶片的疲劳特性,评价叶片设计是否符合要求。结果表明:叶片挥舞方向为风力发电机组的主要损伤方向。  相似文献   

4.
5.
6.
池腾腾  王南  周莎莎  刘庆阳 《包装工程》2016,37(17):157-161
目的运用螺旋理论在Matlab平台上对一种封装并联机构2-RPU/SPR,以及因其运动副摆放位置不同衍生出的3种两转一移并联机构2-UPR/SPR,2-UPR/RPS和2-RPU/RPS的静力学特性进行分析,并比较它们的优劣性。方法文中采用螺旋理论法对4种并联机构建立静力学数学模型,进而运用Matlab编程软件建立4个机构的程序模型,在Matlab中分2种情况对4个机构进行静力学分析。结果机构2-RPU/SPR的驱动力与其他3个机构相比相对较小;机构2-RPU/SPR的等效约束力和驱动力与其他3个机构相比变化波动较小。在动平台输出相同的情况下,机构2-RPU/SPR易于控制与驱动,灵活性高于其他3个机构;在动平台位姿相同的情况下,机构2-RPU/SPR抗外界干扰的能力优于其他3个机构。结论并联机构2-RPU/SPR比另外3个并联机构更好,在高精度包装工程中更具有实际应用前景。  相似文献   

7.
对影响大型风机塔顶法兰设计的因素进行了分析。模拟结果显示,塔顶法兰的设计受其他零部件尺寸的影响也比较大,不容忽视。对塔顶法兰进行设计时必须考虑到这一点,为以后塔顶法兰的设计提供了有利的依据。  相似文献   

8.
涡轮分子泵是一种精密高速旋转机械,在设计过程中对主轴、转子等关键件的设计作科学准确的计算、校核尤为重要。文章阐述了借助PRO/E、PRO/MECHANICA软件(试用版)对涡轮分子泵的涡轮叶片进行结构设计、有限元分析(应力分析及位移分析),大大提高了设计的准确率、增强了设计的可靠性及缩短了产品的研发周期。把CAD、CAE有效地应用于实际的产品结构设计中,将会对产品的研发起很大的作用。  相似文献   

9.
本文研究了风力发电机倾斜角度控制问题,探讨了自适应模糊PID调节器在该控制系统中的应用。通过仿真试验和分析,验证了自适应模糊PID调节器在不确定模型条件下的稳定性和控制效果。结果表明,与传统PID控制器相比,自适应模糊PID调节器能够更好地响应风力发电机的倾斜角度控制,能够快速、平滑地调节角度并保持稳定。本文可为提高风能利用效率和减少环境污染提供参考,未来可验证其他控制方法以获得更好性能。  相似文献   

10.
针对变刚度层合结构,大多采用板壳理论或常规的位移有限元法分析其力学行为。相较位移元,非协调广义部分混合元同时引入位移和应力边界条件,提高了应力结果精度,且边界应力更符合真实情况。扩展了纯弹性体的非协调广义部分混合元理论,提出适用于变刚度层合结构修正的非协调广义部分混合元模型。与ABAQUS计算结果对比证明,即使在网格较稀疏的情况下,该文方法也具有较好的适用性,且数值结果精确度高。通过算例分析了纤维铺设角度的变化对变刚度层合板平面内位移场的影响,可为变刚度结构的设计提供一定的思路。  相似文献   

11.
碳纤维增强环氧树脂复合材料(CFRP)构件干涉配合连接的插钉轴向力过大会引起层合板弯曲和分层,严重影响产品的安全性。针对CFRP层合板的高锁螺栓干涉连接过程,分析了其制孔、插钉及拧紧等装配连接工艺,将其干涉插钉过程划分为4个阶段,并对各个阶段进行了详细的力学行为分析;对螺栓杆处和倒角处的挤压力和摩擦力分别进行力学建模,并结合各作用力的边界条件与阶段划分,构建了干涉插钉全过程的轴向力模型;通过ABAQUS有限元模拟了CFRP层合板干涉插钉工艺过程,并开展了干涉螺栓安装实验,对比分析了层合板孔周径向挤压应力分布和插钉轴向力变化规律,解析结果与模拟和实验结果吻合较好,为后续CFRP层合板的插钉分层损伤和工艺优化研究奠定基础。   相似文献   

12.
利用弹性非保守系统自激振动的拟固有频率变分原理,推导出复合材料矩形板受非保守随从力作用的变分方程,进而导出此问题的有限元基本方程及求解临界力和固有频率的特征方程。用载荷增量法计算了在多种边界条件下不同边长比的复合材料矩形板在面内受随从力作用的临界载荷,分析了不同角铺设方向及两种材料组合板的临界载荷。计算结果表明,边界条件对层合板的动力稳定性有较大影响,复合材料层合板的角铺设方向对临界载荷有较大影响。  相似文献   

13.
A smart blade conception has been proposed by the authors. With stretching–twisting coupling effect, the blade is twisted by centrifugal load or ambient temperature change. In this paper, the blade, simplified as a cantilevered antisymmetric laminate, is investigated by classic plate theory. An analytical scheme based on Rayleigh–Ritz (RR) method is proposed to calculate plate's deformation behavior. RR's analytical results are compared with FEM's to check the present scheme's numerical accuracy. Influence of the fiber orientation angle is discussed and the angle at which the blade twists most is found. Further analysis focusing on plate's nonlinear behavior is performed. The nonlinearity, originated with large out-plane deflection, influences the plate in two aspects: large-strain and follower force. These aspects are discussed separately in the analysis, by introducing quadric terms into strain and virtual work expressions. It is shown that for the present model, nonlinear influence must be considered at 10,000 rpm rotation speed loading, but is negligible at temperature-load below 120 K.  相似文献   

14.
紫外荧光树脂基复合材料可用于航空航天大型复合材料制件牺牲层的制备,减少装配中垫片的使用,并通过牺牲层的荧光显色避免切削时伤及本体铺层.采用热熔法制备了紫外荧光双马树脂及国产T700碳纤维机织物/紫外荧光双马树脂预浸料,采用热压罐法制备了国产T700/紫外荧光双马树脂复合材料.系统研究了未添加紫外荧光粉、添加1.8%含量...  相似文献   

15.
基于Hoff型夹层板理论,推导了夹层板广义的应力应变关系式,得到了等效板的弹性常数,从而建立了考虑表层抗弯刚度的夹层板静力学等效模型.通过理论分析和计算,研究了夹层板的参数对这种等效精度的影响,并给出了这种等效分析方法的适用范围.研究表明,利用等效分析方法对Hoff型夹层板进行静力分析可在一定范围内可达到满意的精度.  相似文献   

16.
复合材料层合板连接件力学性能影响因素分析   总被引:1,自引:0,他引:1  
在位移载荷作用下,基于二维有限元模型,通过编写材料失效准则和刚度退化规则的ABAQUS用户子程序USFLD,并考虑剪切非线性效应,分析了一般铺层下配合间隙、挤压面切向摩擦系数和开孔形状对复合材料层合板单钉螺栓连接力学性能的影响。结果表明:小的配合间隙、大的挤压面切向摩擦系数和开孔形状采用圆孔时均有利于提高连接强度。  相似文献   

17.
GaN community has recently recognized that it is imperative that the extended, and point defects in GaN and related materials, and the mechanisms for their formation are understood. This is a first and an important step, which must be followed by defect reduction before full implementation of this material and its allied binaries/ternaries in devices. This review is based on a recent concerted effort to establish benchmarks as far as defects are concerned, and identify the basic issues involved. Samples were analyzed for extended defects by TEM and chemical etches, for polarity by electric force microscopy and convergent beam electron diffraction (CBED), for point defects by DLTS, for optical quality and deep defects by photoluminescence (PL), for vacancies by positron annihilation, for donor and acceptor like states within the gap by ODMR and EPR, and for carrier transport targeted for defects and impurities by variable temperature and magnetic field-dependent Hall measurements.Hydride VPE samples grown at Lincoln Laboratories with 1.5, 5.5 and 55 μm thicknesses were investigated for defects by TEM, and their polarity was found to be Ga-polarity, as expected, by CBDE combined with simulations. The density of misfit dislocations at the substrate/EPI interface was determined to be on the order of 1013 cm−2 based on high-resolution electron microscopy images. The threading dislocation density decreased gradually with distance from the interface, reaching a value of about 108 cm−2 at the surface of a 55 μm film. A 200 μm thick laser separated and free-standing HVPE grown GaN template grown at Samsung was also characterized similarly. The free surface and substrate sides were confirmed to be Ga- and N-polarity, respectively. The density of dislocations near the N-face was determined to be, in order, (3±1)×107 and (4±1)×107 by cross-sectional TEM and plan-view TEM, respectively. Identical observations on the Ga-face revealed the defect concentration to be less than 1×107 cm−2 by plan-view TEM and 5×105 cm−2 by cross-sectional TEM.Defects in a 10 μm thick GaN layer grown by HVPE at Lincoln Laboratory have been investigated by photo electrochemical (PEC) etching, and by wet etching in hot H3PO4 acid and molten KOH. Threading vertical wires (i.e. whiskers) and hexagonal-shaped etch pits are formed on the etched sample surfaces by PEC and wet etching, respectively. Using atomic force microscopy, one finds the density of “whisker-like” features to be 2×109 cm−2, the same value found for the etch-pit density on samples etched with both H3PO4 and molten KOH. Values agree well with TEM results.A free standing GaN template has been characterized for its structural and optical properties using X-ray diffraction, defect delineation etch followed by imaging with atomic force microscopy (AFM). The Ga-face and the N-face of the c-plane GaN exhibited a wide variation in terms of the defect density. The defect concentrations on Ga- and N-faces were about 5×105 cm−2 for the former and about 1×107 cm−2 for the latter, again in good agreement with TEM results mentioned above.High resolution X-ray rocking curves (omega scans) were measured. The [0 0 2] symmetric and [1 0 4] asymmetric peaks in 10 μm thick HVPE films had FWHM values between 5.8 and 7.9 arcmin, and 3.9 and 5.2 arcmin, respectively. The Samsung template investigated had wide diffraction peaks (20.6 and 24 arcmin for [0 0 2] and [1 0 4] diffractions, respectively) on the Ga-face, similar for the N-face, when a 2 mm slit size was used. When the slit size was reduced to 0.02 mm, the Ga- and N-face [0 0 2] peaks reduced to 69 and 160 arcsec. A bowing radius of 1.2 m was calculated to account for increased broadening with wider slits.In the HVPE layer studied, SIMS investigations indicate that both O and Si concentrations drop rapidly away from the surface into the sample — mainly due in part to the artifact of the technique and in part due to condensates on the surface of the sample, down to about 1017 cm−3 for Si and high 1016 cm−3 for O. The Ga-face profile in the Samsung template indicated levels below mid-1016 cm−3 for all three of the impurities. The picture is different for the N-side, however, as it was juxtaposed to the substrate during growth and was mechanically polished after laser separation. The impurity concentration on this face, depending on the species, is some 1–3 orders of magnitude higher than the case for the Ga-face.Transport properties as a function of the layer thickness, ranging from about 1 to 68 μm, while all the other parameters being the same, as they evolve from the sapphire/GaN interface and up were determined in epitaxial layers. A strong dependence on distance from the interface was observed with the averaged mobility figures increasing from 190 cm2/V s in the 5 μm film to 740 cm2/V s in the 68 μm film. The preliminary differential Hall measurements indicate that the mobility at the surface of the thick layer is about 1200 cm2/V s. Electron mobilities in free-standing template were 1425 cm2/V s at T=273 K and 7385 cm2/V s at T=48.2 K. By using the most recent unscreened acoustic deformation potential and allowing only the acceptor concentration to vary (2.4×1015 cm−3 for the best fit), one obtains an excellent fit to the measured mobility in the temperature range of 30–273 K by using an iterative BTE method. In addition, an excellent fit for the temperature-dependent electron concentration was also obtained utilizing the acceptor concentration determined from the fit to the Hall data, and the charge balance equation. This led to a donor concentration of 1.6×1016 cm−3, and activation energy of 26 meV, the latter being the highest reported in the literature for GaN.In the free-standing template, the Γ5 and Γ6 free excitons were identified from emission measurements by utilizing polarization geometries where the E field is perpendicular to the c-axis, favoring the Γ5 exciton, and E field parallel to the c-axis (incident beam from the edge of the wafer) favoring the Γ6 exciton. Focusing on the defect region of the PL spectrum, the N-face of the sample exhibited the usual yellow line. However, the Ga-face exhibited a broad band encompassing both yellow and green bands. The yellow luminescence in the free-standing template is weak and can be easily saturated. In contrast, the green luminescence is dominant and is attributed to the isolated defect involving gallium vacancy, whereas the yellow luminescence is related to the same defect bound to dislocation or surface-bound structural defect.Deep centers have been characterized by DLTS in HVPE-grown GaN epilayers of different thickness and dislocation densities, and templates. The main deep centers, such as A1, B, and D, show higher concentrations in thinner samples, which suggests a correlation to the high dislocation densities. Based on the anti-correlation between A1 and B, which is observed in thin HVPE-GaN layers, the defect B was tentatively attributed to NGa. Centers A1 and E1 found in thin HVPE-GaN are very similar to centers A2 and E induced by electron-irradiation, indicating their point-defect nature. Centers A, C, and D are not affected by 1 MeV electron-irradiation, thus ruling out the possibility of these centers being identical to any EI-induced centers; however, their nature remains unknown. As the layer thickness decreases, an increase of deep centers, both in species and concentrations, was clearly observed, which is believed to be closely associated with the significant increase of threading dislocations as revealed by TEM. Based on a comparison with EI-induced centers and an observation of anti-correlation, A1 is tentatively assigned to NI, and B to NGa. The template exhibited a new trap B′, with parameters ET=0.53 eV and σT=1.5×10−15 cm2 on the Ga-face, in addition to the four traps commonly observed in various epitaxial GaN layers. For the N-face, an N vacancy-related trap E1, with ET=0.18 eV and σT=4×10−17 cm2, was observed. On the other hand, the Ga-face sample contained trap C, with ET=0.35 eV and σT=1.6×10−15 cm2. This trap may be related to surface damage caused by the RIE process employed.Electron beam and optical depth-profiling of thick (5.5–68 μm) n-type HVPE-GaN samples have been carried out using electron beam-induced current (EBIC) and micro-PL to determine the minority carrier diffusion length, L, and minority carrier lifetime. The minority carrier diffusion length increased linearly from 0.25 μm, at a distance of about 5 μm from the GaN/sapphire interface, to 0.63 μm at the GaN surface for a 36 μm thick sample. The increase in L was accompanied by a corresponding increase in PL band-to-band radiative transition intensity as a function of distance from the GaN/sapphire interface. These observations in PL intensity and minority carrier diffusion length have been attributed to a reduced carrier mobility and lifetime at the interface and to scattering at threading dislocations.Positron annihilation experiments have been conducted in HVPE films with varying thicknesses from 1 to 68 μm. Mg-doped samples and bulk GaN platelets have also been investigated and the behavior of positron annihilation in Mg-doped samples established. Unlike the Mg-doped samples, the positron lifetime in the HVPE samples increased with decreasing lattice temperature. This was interpreted as acceptors in these n-type samples being due to Ga vacancies as opposed to relatively shallow acceptor impurities. The similarities in the behavior of these samples and those investigated previously where the III/V ratio was changed also lend support to the Ga vacancy argument. Previous investigations established that as the III/V is lowered by increasing the ammonia flow during the growth, the Ga vacancy concentration increased. Using Mg-doped samples as a standard, the vacancy concentration was determined to be about 1017 cm−3 near the surface for the layer with a thickness greater than 30 μm. Assuming that the growth parameters in the set of layers with varying thicknesses that were investigated are the same, the Ga vacancy concentration increases to mid-1019 cm−3 near the interface. Since the interfacial region is n-type and highly conductive, this region must also contain even larger concentrations of O and/or N vacancies which lead to n-type material. SIMS results already indicate mid-1019 cm−3 levels of O being present in this region. This has been attributed to O out-diffusion from sapphire as previously reported.FTIR, ODMR and EPR measurements have been performed in GaN layers and templates. In FTIR measurements, two absorption bands corresponding to binding energies of 30.9 (Si) and 33.9 meV were found. Splitting of the binding energies with magnetic field is consistent with an effective mass of 0.22m0. Angular rotation studies were performed with the magnetic field oriented perpendicular and parallel to the c-axis to provide symmetry information. The ODMR on the 2.2 eV peak in a 5–10 μm thick GaN layer, the notorious yellow emission, showed signatures of shallow donor (effective mass like) and deep defect centers with g-values of 1.95 and 1.99, respectively. The 3.27 eV peak with resolved LO phonon replicas, which is the blue peak observed in many GaN films grown by a variety of methods, is attributed to transitions involving shallow acceptors with g2.1 and g2.0. ODMR on the 2.4 eV “green” PL band in the free-standing template also revealed evidence for shallow donors with a g-value of 1.95 and other deeper centers. The larger line width of the shallow donor signal from the template, relative to that found for the epitaxial layers, is indicative of a lower concentration of this center, which leads to an increased hyperfine interaction. EPR studies confirmed the notable difference between the epilayers and the template, particularly the larger line widths in the template due to the lower concentration of shallow donors. Specifically, the free-standing sample has about 6×1015 cm−3 uncompensated donors while the epilayers have a concentration about a factor of four higher.Calculations indicate that incorporation of Si has a negligible effect on the lattice constant, but O and Mg can lead to an observable expansion of the lattice. Since values of the GaN lattice constant have often been based on bulk crystals that are now known to contain large concentrations of oxygen, the “true” GaN lattice constant is actually smaller than what has been measured for such crystals. Boron is an unintentional impurity that can be introduced during MBE growth. There has been speculation about whether B might act as an acceptor in GaN; this would require it to be incorporated on the nitrogen site. Computations indicate that incorporating B on the N site is energetically unfavorable. Even if it did incorporate there, it would act as a deep, rather than a shallow acceptor. Formation energies of H in AlN and GaN have also been calculated. The behavior of H in AlN is very similar to GaN: H+ dominates in p-type, H in n-type. Surprisingly, H in InN behaves exclusively as a donor, i.e. it is not amphoteric as in GaN and AlN, but actually contributes to the n-type conductivity of the material.Scanning thermal microscopy (SThM) has been applied to measure the local thermal conductivity of epitaxial GaN as it is affected to a large extent by phonon scattering, and a closer to the true value of this parameter can be obtained by a local measurement in areas of lower defect concentration such as those found in the wing regions of lateral epitaxially grown GaN. The method relies on a thermo-resistive tip forming one quadrant of a Winston bridge. The bridge is balanced with the tip heated followed by bringing the tip in contact with the sample under test which cools down due to thermal dissipation. However, the feedback circuit attempts to keep the thermo-resistance and thus the tip temperature the same. The square of the feedback voltage necessary for this is proportional to the thermal conductivity. Accurate values can be obtained with calibration using known substrates such as GaSb, GaAs, InP, Si and Al metal. Using SThM, thermal conductivity, κ, values of 2.0–2.1 W/cm K in the wing regions of lateral epitaxially grown GaN, 1.70–1.75 W/cm K in HVPE grown GaN, and 3.0–3.3 W/cm K for free-standing AlN have been measured.  相似文献   

18.
开发了以Ti4+为桥联剂制备无机-有机复合膜的新方法以自制的硅藻土多孔陶瓷为基膜(支撑体),使用浸涂法-热致相转化法相结合制备了TiO2-聚乙烯复合膜,并用红外光谱表征了复合膜层与层之间的结合方式和强度,支撑体中的SiO2通过Ti4+与聚乙烯的分子之间形成了新的化合物型膜层  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号