首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N2O emission from cropland in China   总被引:1,自引:0,他引:1  
Based on the regionalization of uplands and paddy fields in China, the crop intensity in each region and the available field measurements, N2O emission from cropland in China in 1995 was estimated to be 398 Gg N, in which, 310 Gg N was from uplands, accounting for 78% of the total. 88 Gg N–N2O was emitted from paddy fields with 35 Gg N emitted during the rice growing season and 53 Gg N emitted during upland crop season. N2O emission from upland and from paddy field during upland land crop season accounted for 91% of the total emission.  相似文献   

2.
In the following study N2O emissions from 3 different grasslands and from 3 different arable lands, representing major agriculture areas with different soil textures and normal agricultural practices in Belgium, have been monitored for 1 to 2 years. One undisturbed soil under deciduous forest was also included in the study. Nitrous oxide emission was measured directly in the field from vented closed chambers through photo-acoustic infrared detection. Annual N2O emissions from the arable lands ranged from 0.3 to 1.5 kg N ha−1 y−1 and represent 0.3 to 1.0% of the fertilizer N applied. Annual N2O emissions from the intensively managed grasslands and an arable land sown with grass were significantly larger than those from the cropped arable lands. Emissions ranged from 14 to 32 kg N ha−1 y−1, representing fertilizer N losses between 3 and 11%. At the forest soil a net N2O uptake of 1.3 kg N2O-N ha−1 was recorded over a 2-year period. It seems that the N2O-N loss per unit of fertilizer N applied is larger for intensively managed and heavily fertilized (up to 500 kg N ha−1) grasslands than for arable lands and is substantially larger than the 1.25% figure used for the global emission inventory. Comparison of the annual emission fluxes from the different soils also indicated that land use rather than soil properties influenced the N2O emission. Our results also show once again the importance of year-round measurements for a correct estimate of N2O losses from agricultural soils: 7 to 76% of the total annual N2O was emitted during the winter period (October–February). Disregarding the emission during the off-season period can lead to serious underestimation of the actual annual N2O flux. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Rice-flooding fallow, rice-wheat, and double rice-wheat systems were adopted in pot experiment in an annual rotation to investigate the effects of cropping system on N2O emission from rice-based cropping systems. The annual N2O emission from the rice-wheat and the double rice-wheat cropping systems were 4.3 kg N ha–1 and 3.9 kg N ha–1, respectively, higher than that from rice-flooding fallow cropping system, 1.4 kg N ha–1. The average N2O flux was 115 and 118 g N m–2 h–1 for rice season in rice-wheat system and early rice season in double rice-wheat system, respectively, 68.6 and 35.3 g N m–2 h–1 for the late rice season in double rice-wheat system and rice season in rice-flooding fallow, respectively, and only 3.1–5.3 g N m–2 h–1 for winter wheat or flooding fallow season. Temporal variations of N2O emission during rice growing seasons differed and high N2O emission occurred when soil conditions changed from upland crop to flooded rice.  相似文献   

4.
Diffusion analysis of N2O cycling in a fertilized soil   总被引:1,自引:0,他引:1  
The behavior of nitrous oxide (N2O) in fertilized soil was studied in terms of soil fluxes, the production rates at various depths and the turnover in soil. The diffusive losses of N2O to the atmosphere calculated from soil N2O profile compared favorably with the flux directly determined with a closed chamber technique. The estimate of N2O production rates at several depths demonstrated that the sites of N2O production was only near the soil surface. The calculated residence time of N2O in the entire soil column studied was only 1.4 hour during active emission period and less than 1 day even in the later period having trace N2O emission. The prolonged N2O emission observed after the active phase was due likely to a lasting N2O production rather than a supply from the soil N2O reservoir. The results suggested that most N2O in soil was emitted quite promptly to the atmosphere after its production. A minor role of soil as an N2O reservoir is emphasized from the viewpoint of the origin of groundwater N2O. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Data on the emissions of oxides of nitrogen from the soil during the early part of the wet season are reported for nutrient-rich and nutrient-poor sandy soils at Nylsvley, South Africa. The emissions of NOx and N2O following the first wetting event of the season are elevated relative to subsequent events. The observed high emission rates (76 ng N-NO m-2 s-1) are partially attributed to the sandiness of the soil, which permits NO to diffuse out of the soil rapidly. The pulse of high emissions following wetting is maintained for approximately 72 hours, thereafter continuing at around 20 ng NO m-2 s-1 while the soil remains moist. The initial pulse is suggested to be due to the accumulation of a substrate pool during the dry period, coupled with an inability of plants and microbes to use it effectively during the first few days after wetting. There were no significant differences in the peak or subsequent emission rates for either NO or N2O between two sites of differing nitrogen mineralisation potentials. N2O emissions averaged 8% of NOx emissions. The enhanced emissions of NOx which follow the first wetting after a prolonged dry period do not make a very large contribution to the annual gaseous N emission budget, but could be a significant contributor to the high tropospheric ozone levels observed over southern Africa in springtime.  相似文献   

6.
Predicting the N2O flux from soils is difficult because of the complex interplay of the various processes involved. In this study a boundary line approach was used to apply results from mechanistic experiments to N2O flux data resulting from measurements on field scale in southern Germany. Boundary lines were fitted to the rim of the data points in scattergrams depicting readily obtainable soil variables against the measured N2O flux. The boundary line approach is based on the hypothesis that this line depicts the functional dependency between the two variables. For determining these boundary lines a novel method was applied. The function best representing the relationship between the N2O flux and soil temperature had a maximum above 23 °C and the one between the N2O flux and the water filled pore space (WFPS, to represent water content) had a maximum at 72% WFPS. In the range of 0–20 mg N kg-1 the relationship between N2O flux and nitrate in the soil was best described by a linear function, whereas in the range of 0–35 mg N kg-1 a Michaelis–Menten function was more appropriate. The boundary lines specified in this study are in agreement with existing theoretical concepts as well as experimental results obtained under controlled and field conditions as reported in the literature. Therefore, the boundary line approach can be used to improve empirical models for predicting the N2O flux in the field.  相似文献   

7.
N2O and NO fluxes from grassland soil after the application of cattle and swine excreta were measured by a closed chamber method in the autumn and winter of 1994 to 1995. Fresh excrement and urine were spread on the grassland experimental plots and these gas fluxes were measured one or two times a week. In the autumn experiment, N2O and NO fluxes began to increase several days after the application, the NO flux reaching a maximum after 16 days. In the winter experiment, N2O and NO fluxes began to increase 45 days after the application and reached a maximum after 80 days. Nitrous oxide flux was influenced by soil water content, high water content leading to high N2O flux. The ratio of NO-N/N2O-N in the flux was in the range of 1.1 to 13.7, and negatively correlated to the soil water content. In the winter experiment, the total emission rate of NO was 0.48% and 0.45% of total nitrogen in the applied cattle and swine excreta, respectively. The total emission rate of N2O was 0.085% and 0.098% in the applied cattle and swine excreta, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Annual cycles of NO, NO2 and N2O emission rates from soil were determined with high temporal resolution at a spruce (control and limed plot) and beech forest site (Höglwald) in Southern Germany (Bavaria) by use of fully automated measuring systems. The fully automated measuring system used for the determination of NO and NO2 flux rates is described in detail. In addition, NO, NO2 and N2O emission rates from soils of different pine forest ecosystems of Northeastern Germany (Brandenburg) were determined during 2 measuring campaigns in 1995. Mean monthly NO and N2O emission rates (July 1994–June 1995) of the untreated spruce plot at the Höglwald site were in the range of 20–130 µg NO-N m-2 h-1 and 3.5–16.4 µg N2O-N m-2 h-1, respectively. Generally, NO emission exceeded N2O emission. Liming of a spruce plot resulted in a reduction of NO emission rates (monthly means: 15–140 µg NO-N m-2 h-1) by 25-30% as compared to the control spruce plot. On the other hand, liming of a spruce plot significantly enhanced over the entire observation period N2O emission rates (monthly means: 6.2–22.1 µg N2O-N m-2 h-1). Contrary to the spruce stand, mean monthly N2O emission rates from soil of the beech plot (range: 7.9–102 µg N2O-N m-2 h-1) were generally significantly higher than NO emission rates (range: 6.1–47.0 µg NO-N m-2 h-1). Results obtained from measuring campaigns in three different pine forest ecosystems revealed mean N2O emission rates between 6.0 and 53.0 µg N2O-N m-2 h-1 and mean NO emission rates between 2.6 and 31.1 µg NO-N m-2 h-1. The NO and N2O flux rates reported here for the different measuring sites are high compared to other reported fluxes from temperate forests. Ratios of NO/N2O emission rates were >> 1 for the spruce control and limed plot of the Höglwald site and << 1 for the beech plot. The pine forest ecosystems showed ratios of NO/N2O emission rates of 0.9 ± 0.4. These results indicate a strong differentiating impact of tree species on the ratio of NO to N2O emitted from soil.  相似文献   

9.
We estimated the productive potential of methane in paddy soils by anaerobically incubating soils in the laboratory. In addition, we determined the emission fluxes from the rice paddies through rice plants during the whole growth period, according to the methods suggested by Cicerone & Shetter (1981). The results showed that the total amounts of methane emission from rice paddies were very close to the productive potential of the soils and suggested that the large parts of methane emitted from rice paddies originated from the productive potential of methane. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
A novel process for the direct ammoxidation of propane over steam-activated Fe-silicalite at 723–823 K is reported. Yields of acrylonitrile (ACN) and acetonitrile (AcCN) below 5% were obtained using N2O or O2 as the oxidant. Co-feeding N2O and O2 boosts the performance of Fe-silicalite compared to the individual oxidants, leading to AcCN yields of 14% and ACN yields of 11% (propane conversions of 40% and products selectivity of 25–30%). The beneficial effect of O2 on the propane ammoxidation with N2O contrasts with other N2O-mediated selective oxidations over iron-containing zeolites (e.g. hydroxylation of benzene and oxidative dehydrogenation of propane), where a small amount of O2 in the feed dramatically reduces the selectivity to the desired product. It is shown that the productivity of ACN and especially AcCN, expressed as mol product h−1 kgcat−1, is significantly higher over Fe-silicalite than over active propane ammoxidation catalysts reported in the literature. Our results open new perspectives to improve the performance of alkane ammoxidation catalysts.  相似文献   

11.
The catalytic conversion of N2O to N2 in the presence or the absence of propene and oxygen was studied. The catalysts examined in this work were synthesized impregnating metals (Rh, Ru, Pd, Co, Cu, Fe, In) on different supports (Al2O3, SiO2, TiO2, ZrO2 and calcined hydrotalcite MgAl2(OH)8·H2O). The experimental results varied both with the type of the active site and with the type of the support. Rh and Ru impregnated on -alumina exhibited the highest activity. The performance of the above most promising catalysts was studied using various hydrocarbons (CH4, C3H6, C3H8) as reducing agents. These experimental results showed that the type of reducing agent does not affect the reaction yield. The temperature where complete conversion of N2O to N2 was measured was independent of the reductant type. The activity of the most active catalysts was also measured in the presence of SO2 and H2O in the feed. A shift of the N2O conversion versus temperature curve to higher temperatures was observed when SO2 and H2O were added, separately or simultaneously, to the feed. The inhibition caused by SO2 was attributed to the formation of sulfates and that caused by water to the competitive chemisorption of H2O and N2O on the same active sites.  相似文献   

12.
Nations are now obligated to assess their greenhouse gas emissions under the protocols of Article 4 of the United Nations Framework Convention on Climate Change. The IPCC has developed `spreadsheet-format' methodologies for countries to estimate national greenhouse gas emissions by economic sector. Each activity has a magnitude and emission rate and their product is summed over all included activities to generate a national total (IPCC, 1997). For N2O emissions from cropland soils, field studies have shown that there are important factors that influence N2O emissions at specific field sites that are not considered in the IPCC methodology. We used DNDC, a process-oriented agroecosystem model, to develop an unofficial national inventory of direct N2O emissions from cropland in China. We assembled county-scale data on soil properties, daily weather, crop areas, N-fertilizer use, livestock populations (for manure inputs to cropland), and agricultural management for the 2500 counties in mainland China. Total 1990 cropland area was 0.95 million km2. Total N-fertilizer use in China in 1990 was 16.6 Tg N. The average fertilization rate was 175 kg N ha−1 cropland. One-year simulations with DNDC were run for each crop type in each county to generate estimates of direct N2O emissions from soils. National totals were the sum of results for all crop simulations across all counties. Baseline simulations estimated that total N2O emission from arable land in China in 1990 was 0.31 Tg N2O-N yr−1. We also ran simulations with zero N-fertilizer input; the difference between the zero-fertilizer and the baseline run is an estimate of fertilizer-induced N2O emissions. The fertilizer-induced emission was 0.13 Tg N2O-N yr−1, about 0.8% of total N-fertilizer use (lower than the mean but within the IPCC range of 1.25±1.0%). We compared these results to our estimates of county-scale IPCC methodology emissions. Total emissions were similar but geographical patterns were quite different. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The use of low-sulfur fuel is known to improve the performance of the three-way catalytic converter (TWC). However, in this work we report how low-sulfur operation of commercial TWC also favors formation of N2O and NH3 as by products. We found that low-sulfur rich operation above 300 °C increases the production of NH3, inhibiting the formation of N2O characteristic of high-sulfur operation. During lean operation, the production of N2O near the stoichiometric point is not significantly affected by the sulfur level. The large production of N2O observed during light-off is not affected by SO2 when the operation is lean, but under rich conditions N2O is produced up to 575 °C. The increased production of NH3 and N2O in TWC as a result of the introduction of low-sulfur gasoline is an area that requires further analysis because of its implication upon public health in large urban settings.  相似文献   

14.
Surface nitrite/nitrate redox cycles were proposed to explain light-off behavior that was observed during the decomposition of N2O over Fe-ZSM-5. Further study has demonstrated that while the nitrite/nitrate model can explain the original observations as an isothermal, mechanistic phenomenon, the light-off behavior is thermal, and not a mechanistic effect. Nonetheless, a pathway involving nitrite/nitrate redox cycles appears to be more consistent with experimental observation than the simple two-step pathway involving cation redox cycles. In particular, the nitrite/nitrate pathway can explain the effect of added NO upon the reaction kinetics and the reported isotopic product composition when unlabeled N2O reacts over an oxygen-labeled catalyst. Further, a nitrite/nitrate pathway is consistent with the steady-state kinetics as well as published thermal desorption and infrared spectroscopic results.  相似文献   

15.
N2O decomposition on an ion-exchanged Fe-MFI catalyst has been studied using an 18O-tracer technique in order to reveal the reaction mechanism. N2 16O was pulsed onto an 18O2-treated Fe-MFI catalyst at 693 K, and the O2 molecules produced were monitored by means of mass spectrometry. The 18O fraction in the produced oxygen had almost half the value of that on the surface oxygen, and 18O18O was not detected. The result shows that O2 formation proceeds via the Eley–Rideal mechanism (N2 16O + 18O(a) N2 + 16O18O).  相似文献   

16.
Nitrous oxide (N2O) flux simulations by four models were compared with year-round field measurements from five temperate agricultural sites in three countries. The field sites included an unfertilized, semi-arid rangeland with low N2O fluxes in eastern Colorado, USA; two fertilizer treatments (urea and nitrate) on a fertilized grass ley cut for silage in Scotland; and two fertilized, cultivated crop fields in Germany where N2O loss during the winter was quite high. The models used were daily trace gas versions of the CENTURY model, DNDC, ExpertN, and the NASA-Ames version of the CASA model. These models included similar components (soil physics, decomposition, plant growth, and nitrogen transformations), but in some cases used very different algorithms for these processes. All models generated similar results for the general cycling of nitrogen through the agro-ecosystems, but simulated nitrogen trace gas fluxes were quite different. In most cases the simulated N2O fluxes were within a factor of about 2 of the observed annual fluxes, but even when models produced similar N2O fluxes they often produced very different estimates of gaseous N loss as nitric oxide (NO), dinitrogen (N2), and ammonia (NH3). Accurate simulation of soil moisture appears to be a key requirement for reliable simulation of N2O emissions. All models simulated the general pattern of low background fluxes with high fluxes following fertilization at the Scottish sites, but they could not (or were not designed to) accurately capture the observed effects of different fertilizer types on N2O flux. None of the models were able to reliably generate large pulses of N2O during brief winter thaws that were observed at the two German sites. All models except DNDC simulated very low N2O fluxes for the dry site in Colorado. The US Trace Gas Network (TRAGNET) has provided a mechanism for this model and site intercomparison. Additional intercomparisons are needed with these and other models and additional data sets; these should include both tropical agro-ecosystems and new agricultural management techniques designed for sustainability.  相似文献   

17.
Ag- and Cu-supported TiO2 photocatalysts showed high activity for the reduction of N2O to N2 at room temperature in the presence of CH3OH and H2O vapor. The suppression by H2O on the activity was not observed in the present photocatalyst system. The remarkable behavior of the Ag and Cu co-catalysts for TiO2 photocatalysts agreed well with that of electro- and thermal catalyses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
A field experiment was conducted to investigate the effects of winter management and N fertilization on N2O emission from a double rice-based cropping system. A rice field was either cropped with milk vetch (plot V) or left fallow (plot F) during the winter between rice crops. The milk vetch was incorporated in situ when the plot was prepared for rice transplanting. Then the plots V and F were divided into two sub-plots, which were then fertilized with 276 kg urea-N ha–1 (referred to as plot VN and plot FN) or not fertilized (referred to as plot VU and plot FU). N2O emission was measured periodically during the winter season and double rice growing seasons. The average N2O flux was 11.0 and 18.1 g N m–2 h–1 for plot V and plot F, respectively, during winter season. During the early rice growing period, N2O emission from plot VN averaged 167 g N m–2 h–1, which was eight- to fifteen-fold higher than that from the other three treatments (17.8, 21.0 and 10.8 g N m–2 h–1 for plots VU, FN, and FU, respectively). During the late rice growing period, the mean N2O flux was 14.5, 11.1, 12.1 and 9.9 g N m–2 h–1 for plots VN, VU, FN and FU, respectively. The annual N2O emission rates from green manure-double rice and fallow-double rice cropping systems were 3.6 kg N ha–1 and 1.3 kg N ha–1, respectively, with synthetic N fertilizer, and were 0.99 kg N ha–1 and 1.12 kg N ha–1, respectively, without synthetic N fertilizer. Generally, both green manure N and synthetic fertilizer N contribute to N2O emission during double rice season.  相似文献   

19.
Temperature programmed desorption, FT-IR spectra and hydrolysis of adsorbed oxygen species revealed that a considerable amount of adsorbed peroxide species were formed on CaO by decomposition of N2O, whereas no adsorbed species were formed by molecular oxygen.  相似文献   

20.
An assessment of N loss from agricultural fields to the environment in China   总被引:48,自引:1,他引:48  
Using the 1997 IPCC Guidelines for National Greenhouse Gas Inventory Methodology, and statistical data from the China Agricultural Yearbook, we estimated that the direct N2O emission from agricultural fields in China in 1990 was 0.282 Tg N. Based on micro-meteorological field measurement of NH3 volatilization from agricultural fields in different regions and under different cropping systems, the total NH3 volatilization from agricultural fields in China in 1990 was calculated to be 1.80 Tg N, which accounted for 11% of the applied synthetic fertilizer N. Ammonia volatilization from agricultural soil was related to the cropping system and the form of N fertilizer. Ammonia volatilization from paddy fields was higher than that from uplands, and NH4HCO3 had a higher potential of NH3 volatilization than urea. N loss through leaching from uplands in north China accounted for 0.5–4.2% of the applied synthetic fertilizer N. In south China, the leaching of applied N and soil N from paddy fields ranged from 6.75 to 27.0 kg N ha-1 yr-1, while N runoff was between 2.45 and 19.0 kg N ha-1 yr-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号