共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes the first long-term field tests done on vacuum glazing. In this preliminary study, glazing samples were mounted in an outdoor environment and observed for more than one year. The effects of large temperature differences and thermal cycling on the thermal performance and the mechanical stability of the glazings have been investigated. The results provide support for the viability of vacuum glazings in their intended application as thermally insulating windows. 相似文献
2.
Thermal conductance measurement on vacuum glazing 总被引:3,自引:0,他引:3
A method is described for measuring the thermal conductance of vacuum glazing that is well-suited for integration into the manufacturing process of such devices. The sample of vacuum glazing to be measured, initially at elevated temperature, is placed in contact with a second sample of vacuum glazing with a known thermal conductance. The external surfaces of the glazings are then cooled by forced flow of air at room temperature, and a measurement is made of the rate of decrease of the temperature of the contacting glass sheets of the two samples. The method is simple to implement, and can be automated. The results obtained with the method are quite reproducible. The measurement can be made as the production samples of vacuum glazing cool at the completion of the manufacturing process, resulting in significant savings in time and labour compared with other methods. 相似文献
3.
The simulated triple vacuum glazing (TVG) consists of three 4 mm thick glass panes with two vacuum gaps, with each internal glass surface coated with a low-emittance coating with an emittance of 0.03. The two vacuum gaps are sealed by an indium based sealant and separated by a stainless steel pillar array with a height of 0.12 mm and a pillar diameter of 0.3 mm spaced at 25 mm. The thermal transmission at the centre-of-glazing area of the TVG was predicted to be 0.26 W m−2 K−1. The simulation results show that although the thermal conductivity of solder glass (1 W m−1 K−1) and indium (83.7 W m−1 K−1) are very different, the difference in thermal transmission of TVGs resulting from the use of an indium and a solder glass edge seal was 0.01 W m−2 K−1. This is because the edge seal is so thin (0.12 mm), consequently there is a negligible temperature drop across it irrespective of the material that the seal is made from relative to the total temperature difference across the glazing. The results also show that there is a relatively large increase in the overall thermal conductance of glazings without a frame when the width of the indium edge seal is increased. Increasing the rebate depth in a solid wood frame decreased the heat transmission of the TVG. The overall heat transmission of the simulated 0.5 m by 0.5 m TVG was 32.6% greater than that of the 1 m by 1 m TVG, since heat conduction through the edge seal of the small glazing has a larger contribution to the total glazing heat transfer than that of the larger glazing system. 相似文献
4.
Using a three-dimensional finite volume model, the thermal performance of an electrochromic vacuum glazing was simulated for insolation intensities between 0 and 1200 W m−2. The electrochromic evacuated glazing simulated consisted of three glass panes 0.5 m by 0.5 m with a 0.12 mm wide evacuated space between two 4 mm thick panes supported by 0.32 mm diameter pillars spaced on a 25 mm square grid contiguously sealed by a 6 mm wide metal edge seal. The third glass pane on which the electrochromic layer was deposited was assumed to be sealed to the evacuated glass unit. The simulations indicate that when facing the indoor environment, the temperature of the glass pane with the electrochromic layer can reach 129.5 °C for an incident insolation of 600 W m−2. At such temperatures unacceptable occupant comfort would ensue and the durability of the electrochromic glazing would be compromised. The glass pane with the electrochromic layer must therefore face the outdoor environment. 相似文献
5.
Current status of the science and technology of vacuum glazing 总被引:1,自引:0,他引:1
This paper reviews the current state-of-the-art of the science and technology of vacuum glazing. The construction of vacuum glazing, and its method of manufacture in the laboratory, is described. Experimental data are presented on the magnitude of heat flows through vacuum glazing. Gaseous heat transfer is negligible, and the internal vacuum is shown to be stable over many years, in well-manufactured glazing. Values of air-to-air, centre-of-glazing thermal conductance have been achieved ranging from 3 W m−2 K−1 (for vacuum glazing with no internal low emittance coating) to 0.8 W m−2 K−1 (for samples with two internal low emittance coatings). The overall heat transport rate through 1 m×1 m samples of vacuum glazing has been measured in accurately calibrated guarded hot box instruments. The results obtained agree to within experimental error (±6%) with those estimated on the basis of local measurements of heat transfer due to radiation, pillar conduction and lateral heat flow through the edge seal. Sources of mechanical tensile stress in vacuum glazing are identified. Stresses due to atmospheric pressure occur in the vicinity of the pillars, and (in poorly designed glazing) near the edge seal. Stresses due to temperature differences are influenced by many factors including the external heat transfer coefficients, level of insulation of the glazing, edge insulation, and edge constraints. Methods of estimating these stresses are discussed. It is shown that vacuum glazing can be designed with adequately low stresses, and low thermal conductance. 相似文献
6.
Stresses in vacuum glazing fabricated at low temperature 总被引:1,自引:0,他引:1
J. Wang P.C. Eames J.F. Zhao T. Hyde Y. Fang 《Solar Energy Materials & Solar Cells》2007,91(4):290-303
This paper reports an experimental and theoretical study of the stresses in and durability of vacuum glazing fabricated at low temperature using an indium based edge seal. For the first time a finite-element model with support pillars incorporated directly, enabled the stresses in the whole structure to be explicitly calculated. Experimental validations of the finite element model predictions were undertaken. Modelling results are presented for a case with American Society of Testing and Materials standard winter boundary conditions. It was found that, for the particular system studied, the predicted stress level in the structure is essentially the same for indium sealed and solder glass sealed vacuum glazing, and the magnitude of stress values in the indium seal is comparable with that dictated by the indium strength characteristics. 相似文献
7.
Yueping Fang Philip C. Eames Brian Norton Trevor J. Hyde Junfu Zhao Jinlei Wang Ye Huang 《Solar Energy》2007,81(1):8-12
The thermal performances of vacuum glazings employing coatings with emittance between 0.02 and 0.16 were simulated using a three-dimensional finite volume model. Physical samples of vacuum glazings with hard and soft coatings with emittance of 0.04, 0.12 and 0.16 were fabricated and their thermal performance characterised experimentally using a guarded hot box calorimeter. Good agreement was found between experimental and theoretical thermal performances for both a vacuum glazing with a soft coating (emittance 0.04) and those with hard coatings (emittance 0.12 and 0.16). Simulations showed that for a low value of emittance (e.g. 0.02), the use of two low-emittance coatings gives limited improvement in thermal performance of the glazing system. The use of a single high performance low-emittance coating in a vacuum glazing has been shown to provide excellent performance. 相似文献
8.
A temperature difference across a sample of vacuum glazing causes differential expansion of one glass sheet relative to the other. In vacuum glazing with a fused edge seal, this results in tensile and compressive stresses in the glass sheets, and bending of the structure. The physical origins of these stresses and deflections are discussed, and a finite element model is used to determine their magnitude. The model has been validated by comparison with experimental data for a well-characterised sample of vacuum glazing under accurately defined external conditions. Modelling data are presented for two glazing designs which have properties that are characteristic of the extremes of performance of this type of glazing. It is shown that mechanical edge constraints can profoundly alter the spatial distribution of stresses in the glazing. 相似文献
9.
Details of theoretical and experimental studies of the change in vacuum pressure within a vacuum glazing after extreme thermal cycling are presented. The vacuum glazing was fabricated at low temperature using an indium-copper-indium edge seal. It comprised two 4 mm thick 0.4 m by 0.4 m glass panes with low-emittance coatings separated by an array of stainless steel support pillars spaced at 25 mm with a diameter of 0.4 mm and a height of 0.15 mm. Thermal cycling tests were undertaken in which the air temperature on one side of the sample was taken from −30 °C to +50 °C and back to −30 °C 15 times while maintaining an air temperature of 22 °C on the other side. After this test procedure, it was found that the glass to glass heat conductance at the centre glazing area had increased by 10.1% from which the vacuum pressure within the evacuated space was determined to have increased from the negligible level of less than 0.1 Pa to 0.16 Pa using the model of Corrucini. Previous research has shown that if the vacuum pressure is less than 0.1 Pa, the effect of conduction through the residual gas on the total glazing heat transfer is negligible. The degradation of vacuum level determined was corroborated by the change in glass surface temperatures. 相似文献
10.
Given the major role played by windows with regard to energy losses from buildings in cold climates, low thermal transmittance is an indispensable property of glazing in low-energy buildings. Evacuation offers the only means of achieving negligible gaseous conduction in glazing cavities. Application of low-emittance coatings to glass sheet surfaces inside the cavity reduces the radiative heat transfer. The feasibility of double vacuum glazing using arrays of support pillars between the glass sheets has been shown by other authors. This type of glazing is commercially manufactured today. Based on these achievements, our study set out to investigate heat transfer in triple vacuum glazing by means of (i) an analytical thermal network model and (ii) a numerical finite difference model. The study focused on the impact of the following parameters on thermal transmittance: emittances of glass sheet surfaces inside the cavity, support pillar radius, support pillar separation and thermal conductivity of support pillar material. The design procedure for triple vacuum glazing taking into account not only thermal but also mechanical stresses due to atmospheric pressure, i.e., to enable identification of favourable parameter sets, is presented. Our findings suggest that use of the triple vacuum glazing concept can significantly reduce the thermal transmittances achieved by the best insulation glazing units currently on the market. E.g., a centre-of-glazing thermal transmittance of less than 0.2 W m−2 K−1 is achievable using stainless steel support pillars, 6 mm/4 mm/6 mm sheets of untempered soda-lime glass and four low-emittance coatings (ε = 0.03). 相似文献
11.
12.
Thermal performance of an electrochromic (EC) vacuum glazing (VG) was modelled under ASTM standard winter conditions. The EC VG comprised three 0.5 m by 0.5 m glass panes with a 0.12 mm wide evacuated space between two 4 mm thick panes sealed contiguously by a 6 mm wide indium based edge seal with either one or two low-emittance (low-e) coatings supported by a 0.32 mm diameter square pillar grid spaced at 25 mm. The third glass pane on which the 0.1 mm thick EC layer was deposited was sealed to the evacuated glass unit. The whole unit was rebated by 10 mm within a solid wood frame. The low-e coating absorbed 10% of solar energy incident on it. With the EC VG installed with the EC component facing the outdoor environment, for an incident solar radiation of 300 W m−2, simulations demonstrated that when the EC layer is opaque for winter conditions, the temperature of the inside glass pane is higher than the indoor air temperature, due to solar radiation absorbed by the low-e coatings and the EC layer, the EC VG is a heat source with heat transferred from the glazing to the interior environment. When the emittance was lower to 0.02, the outdoor and indoor glass pane temperatures of the glazing with single and two low-e coatings are very close to each other. For an insolation of 1000 W m−2, the outdoor glass pane temperature exceeds the indoor glass pane temperature, consequentially the outdoor glass pane transfers heat to the indoor glass pane. 相似文献
13.
Flat vacuum glazings consisting of a narrow evacuated space between two glass panes separated by an array of small support pillars have been fabricated. A guarded hot box calorimeter was designed and constructed to measure their heat transfer coefficients. Experimental measurements of temperatures and rates of heat transfer were found to be in very good agreement with those predicted using a developed finite element model. A method for determining the heat transfer coefficient of the evacuated gap has been established and comparisons are made between the measured and predicted glass surface temperature profiles of the exposed glass area and the heat transfer coefficients of the total glazing system in order to validated the model. 相似文献
14.
Thermal performance of vacuum glazing predicted by using two-dimensional (2-D) finite element and three-dimensional (3-D) finite volume models are presented. In the 2-D model, the vacuum space, including the pillar arrays, was represented by a material whose effective thermal conductivity was determined from the specified vacuum space width, the heat conduction through the pillar array and the calculated radiation heat transfer between the two interior glass surfaces within the vacuum gap. In the 3-D model, the support pillar array was incorporated and modelled within the glazing unit directly. The predicted difference in overall heat transfer coefficients between the two models for the vacuum window simulated was less than 3%. A guarded hot box calorimeter was used to determine the experimental thermal performance of vacuum glazing. The experimentally determined overall heat transfer coefficient and temperature profiles along the central line of the vacuum glazing are in very good agreement with the predictions made using the 2-D and 3-D models. 相似文献
15.
16.
A modified pump-out technique used for fabrication of low temperature metal sealed vacuum glazing 总被引:1,自引:0,他引:1
Jun Fu Zhao Philip C. Eames Trevor J. Hyde Yueping Fang Jinlei Wang 《Solar Energy》2007,81(9):1072-1077
A modified pump-out technique, incorporating a novel pump-out hole sealing process, has been developed that enables a high level of vacuum to be achieved between the panes of a vacuum glazing. The modified pump-out method provides several potential opportunities for the fabrication of a vacuum glazing with improved thermal performance. In particular, improved flexibility for production of a wide range of glazing sizes may allow a lower cost of manufacture to be achieved by avoiding the expense of a high vacuum oven which would otherwise be required for commercial production of high performance, large-scale vacuum glazings.The thermal performance of the vacuum glazing fabricated using the pump-out technique was characterized using a guarded hotbox calorimeter and theoretically analyzed using a finite volume model. The excellent experimentally determined thermal performance of the fabricated vacuum glazing was in good agreement with that predicted theoretically. 相似文献
17.
This paper presents a different approach for thermal effective windows, i.e. windows that reduce the energy transmitted into or out of a room. The idea is to use a double sealed glass filled with a phase change medium (PCM) whose fusion temperature is determined by solar–thermal calculations. The PCM used is polypropylene glycol. The investigation includes modelling of the heat and radiation transfer through a composite window and optical investigation of conventional and PCM filled windows, testing of the window and comparison with numerical simulations. A one-dimensional model for the composite glass window is developed to predict the thermal performance as a function of the geometrical parameters of the panel and the PCM used. Optical measurements were realized using photo-spectrometry to determine the transmittance, reflectance and absorptance. The specimens used include single glass of different thicknesses, double glass of different gap spacing and thicknesses filled with air or PCM, and finally coloured PCM. The results indicate big reductions in the energy transmitted, specially in the infra-red and ultraviolet regions, while maintaining a good visibility. © 1997 by John Wiley & Sons, Ltd. 相似文献
18.
Fundamental properties of all-solid-state electrochromic windows to control the solar energy have been investigated. This system comprises of multilayer represented as Glass/ITO/NiO/Inorganic Electrolyte (Ta2O5, etc.)/ WO3/ITO/ Adhesive Film/ Glass. Of the various electrochromic systems examined so far, the most important features are their environmental stability and the possibility of large area applications. Our system can control the visible transmittance between 72.6% and 17.6% and has a cyclic life over 100000 cycles at 60°C. Based on the accelerated weathering tests, the stability of the system is estimated to be over five years for outdoor applications. For the problem of scaling up, some technical aspect is given and the prototype window of size 40×60 cm is exemplified. The present system could be more suitable for architectural and automobile applications in the near future by developing production technology. 相似文献
19.
F. Mahdjuri 《国际能源研究杂志》1977,1(2):135-142
The paper is introduced by a short survey of heat-transfer processes through a double-glazed window system. Network calculations show the advantage of a double-glazed window including at least one heat-reflecting filter and an IR-trans-parent foil. In the optimum system with one foil, the UL value is slightly below 1 W/m2K. Several insulating glazing systems with air and with krypton filling are compared, and all UL values are calculated. the application of an IR-transparent foil to a solar collector is discussed, and the measured top losses are given. 相似文献
20.
Possible application of vacuum glazing (VG) units for transparent insulation of solar collectors (SC) to reduce their heat losses is considered. Taking into account the SC operating conditions, the heat insulating parameters of VG samples measuring 0.3 × 0.3 m2 and 0.5 × 0.5 m2 are experimentally studied and compared to those of double glazing (DG) of the same size. Basing on the experimental data, the order of the vacuum in the VG is calculated. The contribution of the vacuum gap to the total heat transfer resistance of the VG is evaluated. 相似文献