首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
用MM-200型摩擦磨损试验机考察了了射线辐照对酚酞聚芳醚酮(PEK-C)的摩擦磨损性能的影响,用SEM观察了摩擦表面和磨屑的形貌。结果表明:经辐照后,PEK-C的耐磨损性能下降;随着辐照剂量的增大,PEK-C摩擦因数几乎保持不变,而磨损率呈上升趋势;未辐照试样的磨屑为较小的片状,而辐照后的磨屑为较大的片状,这一现象与材料磨损程度的大小相对应。  相似文献   

2.
采用MPX-2000型摩擦磨损试验机研究了聚四氟乙烯和二硫化钼填充聚酰亚胺复合材料在干滑动摩擦条件下与45钢、镍铬合金、铜和铝对磨时的摩擦磨损性能,并利用扫描电子显微镜和光学显微镜分析了复合材料及对偶件的磨损表面形貌。结果表明:复合材料与铝对磨时的摩擦因数和磨损率最低,分别约为与钢摩擦时的43%和49%;摩擦后铝表面形成均匀连续的转移膜,45钢、镍铬合金和铜的表面没有形成有效转移膜,因此复合材料的摩擦因数较大;复合材料与不同金属材料摩擦时的磨损机理主要是粘着磨损与疲劳磨损。  相似文献   

3.
在高速载流摩擦磨损试验机上对碳/碳复合材料进行摩擦磨损试验,研究了不同电流、载荷和滑动速度下复合材料的摩擦因数、磨损率及磨损表面形貌,并分析了磨损机理。结果表明:在一定载荷作用下,随电流和滑动速度增大,碳/碳复合材料的摩擦磨损性能先保持良好而后趋于恶化;在电流和滑动速度一定的条件下,较低和较高的载荷都会恶化碳/碳复合材料的摩擦磨损性能;随着摩擦表面温度升高,碳/碳复合材料基体开始氧化流失,碳纤维脱落形成磨屑,从而导致磨粒磨损;随后摩擦表面的高温使磨屑软化,磨屑在机械应力作用下逐渐被碾压成碳膜,形成粘着磨损;磨损表面温度的进一步升高以及高速冲击的作用破坏了碳膜的完整性,从而恶化了碳/碳复合材料的摩擦磨损性能。  相似文献   

4.
采用双螺杆挤出机熔融共混和注射成型方法制备了PA66/Si3N4纳米复合材料.研究了纳米Si3N4添加量对复合材料的力学性能和摩擦磨损性能的影响.通过对试样磨损表面及其对摩副表面上转移膜的扫描电子显微镜(SEM)观察和X射线光电子能谱(XPS)分析,探讨了其磨损机制.结果表明,纳米Si3N4的加入降低了基体的拉伸强度和弯曲强度,但是在PA66中加入适量的纳米Si3N4颗粒后,摩擦过程中有利于生成较均匀的转移膜,从而降低摩擦因数.同时磨屑里的纳米Si3N4镶嵌到试样摩擦表面,使表面得到局部增强,从而提高其耐磨性能.  相似文献   

5.
钢在磁场环境中的摩擦磨损行为   总被引:1,自引:0,他引:1  
以45#钢为研究对象,在自制的销-环式摩擦磨损试验机上对其在磁场条件下的摩擦磨损性能进行研究。采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对磨损表面形貌进行表征。试验结果表明:施加磁场后,试样的摩擦因数和磨损率均显著降低;磨屑在接触表面的堆积及氧化是磁场改善钢铁材料摩擦磨损性能的主要原因。  相似文献   

6.
聚醚醚酮填充聚四氟乙烯摩擦学性能   总被引:2,自引:0,他引:2  
采用共混-冷压-烧结的工艺制备聚醚醚酮(PEEK)填充聚四氟乙烯(PTFE)复合材料,考察 PEEK 含量对 PTFE /PEEK 复合材料的力学性能和摩擦学性能的影响,用扫描电子显微镜(SEM)观察其磨损表面和对偶表面形貌,并探讨磨损机制。结果表明:复合材料的拉伸强度随着 PEEK 含量的增加而降低,在一定范围内,冲击强度随着PEEK 含量的增加而增大;随着 PEEK 含量的增多,摩擦因数呈现先减小后增大的趋势,体积磨损率则逐渐减小。当PEEK 质量分数为20%时,复合材料耐磨性较纯 PTFE 提高了近700倍,其原因在于 PEEK 的加入改变了磨屑形成机制,并能形成均匀连续的转移膜,进而降低了磨损。  相似文献   

7.
林娇 《润滑与密封》2018,43(4):53-56
研究干摩擦条件下不同稀土氧化物及其含量对树脂基摩擦材料摩擦磨损性能的影响,并利用扫描电子显微镜对复合材料磨损后的表面进行观察,分析稀土元素对树脂基摩擦材料的改性机制。研究结果表明:稀土氧化物的加入提高了复合材料的摩擦因数,尤其是稀土氧化镧的加入可起到稳定摩擦因数的作用,减小复合材料对载荷和转速的敏感性;未添加稀土氧化物的试样磨损方式以黏着磨损为主,而添加稀土氧化物后试样磨损方式以磨粒磨损为主;添加稀土氧化物后试样磨损表面变得更平整、光滑,这主要是因为稀土氧化物的添加提高了树脂的黏结性,使树脂与其他填料更牢固地粘合在一起,使材料摩擦表面能形成更加稳固的摩擦膜,材料表面的黏着得到有效抑制,因而材料表面的磨损状况得到改善。  相似文献   

8.
采用M-2000型摩擦磨损试验机考察单一纳米氧化锌(ZnO)和石墨以及二者复合填充聚酰亚胺(PI)复合材料在干摩擦下与GCr15轴承钢对摩时的摩擦磨损性能,并利用扫描电子显微镜分析PI复合材料及其对偶件磨损表面形貌状况。结果表明,填充纳米ZnO后,PI复合材料的摩擦学性能变差,填充石墨后,PI复合材料摩擦学性能显著改善;而复合填充纳米ZnO和石墨后PI复合材料的摩擦学性能最佳,即二者存在明显的协同效应。PI复合材料的摩擦磨损性能同其在偶件磨损表面形成的转移膜的性质密切相关,纳米ZnO能显著增强转移膜与对偶件的结合强度,不同PI复合材料呈现不同的磨损机制。  相似文献   

9.
采用共混-冷压-烧结-整形的工艺制备有机物填充聚四氟乙烯(PTFE)复合材料,考察相同含量的不同有机填料对PTFE复合材料力学性能和摩擦学性能的影响。结果发现,加入有机填料后,复合材料的拉伸强度降低,但硬度和压缩强度均提高;有机填料有效地改善了PTFE复合材料的摩擦学性能,其中,质量分数15%聚苯酯填充的PTFE复合材料减摩效果最好,质量分数15%聚酰亚胺填充的PTFE复合材料的耐磨损性能最优。相比之下,质量分数15%芳纶填充的PTFE复合材料摩擦磨损性能及力学性能最好,其耐磨损性能较纯PTFE提高了近400倍,而摩擦因数仅为纯PTFE的84%。其原因在于芳纶的加入有效地改变了摩擦机制,能形成均匀连续的转移膜,进而降低了磨损。  相似文献   

10.
商剑  张越  刘亮 《润滑与密封》2015,40(6):46-49
为探讨干摩擦磨损条件下含石墨转移层对摩擦磨损性能的影响,在45#钢表面覆盖含石墨润滑层,通过干滑动磨损试验,研究含石墨润滑层对钢/铜-二氧化硅摩擦副摩擦因数、磨损量及摩擦损(亚)表面的影响。结果表明:与无石墨润滑层的45#钢相比,含石墨润滑层的45#钢的摩擦因数、磨损率明显下降,且干滑动试验后磨损表面相对光滑平整,表明含石墨摩擦层起到了减摩降磨作用,抑制了金属的直接接触。  相似文献   

11.
Nanometre SiO2 filled-polyetheretherketone (PEEK) composite blocks with different filler proportions were prepared by compression moulding. Their friction and wear properties were investigated on a block-on-ring machine by running a plain carbon steel (AISI 1045 steel) ring against the composite block. The morphologies of the wear traces and the transfer film were observed by scanning electron microscopy (SEM). It was found that nanometre SiO2 filled-PEEK exhibited considerably lower friction coefficient and wear rate in comparison with pure PEEK. The lowest wear rate was obtained with the composite containing 7.5 wt.% SiO2. The SEM pictures of the wear traces indicated that with the frictional couple of carbon steel ring/composite block (fillec with 7.5 wt.% filler), a thin, uniform, and tenacious transfer film was formed on the ring surface. It was inferred that the transfer film contributed largely to the decreased friction coefficient and wear rate of the filled PEEK composites.  相似文献   

12.
用KH550硅烷偶联剂表面改性的硅灰石纤维(WF)填充PTFE,在MPX-2000型磨损试验机上研究复合材料的摩擦磨损性能,并与经典的炭纤维(CF)填充PTFE复合材料进行比较。采用SEM对磨损面和对偶面进行分析。结果表明:较高载荷(200和300 N)下复合材料摩擦因数随WF含量变化的幅度不大,较稳定地维持在较低值;细小尺寸WF填充PTFE复合材料的耐磨性能较好,在WF质量分数为10%时,复合材料的磨损量只有相同含量CF填充PT-FE复合材料的81%;细小尺寸WF填充PTFE复合材料的磨损面较为平整,存在轻微黏着磨损,其对偶面转移膜平整光滑、结构致密;而CF/PTFE复合材料磨损面存在许多裸露和碎断的CF,犁削和磨粒磨损是主要的磨损形式。  相似文献   

13.
Friction and wear tests between a stationary block and a rotating ring under high contact pressure of about 200 MPa were carried out at room temperature under lubrication with a light mineral oil at a sliding distance of 500 m. The block was silicon nitride and cemented carbide, and the ring was bearing steel. The effect of phosphorus and sulphur contained in the mineral oil on the friction, the roughness of the worn surface and the wear of the steel ring is discussed in relation to both pairs. Sulphur was effective in reducing the coefficient of friction of the cemented carbide block-steel ring pair, while phosphorus was successful in decreasing the wear of the steel ring paired with the silicon nitride block. The surface analysis of the steel ring using X-ray photoelectron spectroscopy (XPS) shows that the peak intensities of sulphur or phosphorus beneath the surface depend upon the material of the counterpart, silicon nitride or cemented carbide blocks.  相似文献   

14.
炭黑/双马来酰亚胺复合材料的性能研究   总被引:1,自引:0,他引:1  
采用浇铸成型法制备了炭黑填充双马来酰亚胺(BM I-BA)复合材料,研究了炭黑的填充量对复合材料力学性能和摩擦学性能的影响。在M-200型磨损机上测试该复合材料的摩擦学性能,利用扫描电镜(SEM)观察了摩擦副的表面形貌。结果表明:炭黑能够有效提高复合材料的力学性能和摩擦学性能。当炭黑的添加量为4.0wt%时,复合材料的综合力学性能最好;当炭黑的的添加量为6.0wt%时,复合材料的耐磨性能最好。SEM显示复合材料主要是粘着磨损,能在对磨环上形成薄而连续均匀的转移膜,而BM-BA树脂主要发生的是疲劳磨损,并伴有塑性变形。  相似文献   

15.
Bronze–graphite composite was prepared using powder metallurgy. The friction and wear behaviors of the resulting composites in dry- and water-lubricated sliding against a stainless steel were comparatively investigated on an MM-200 friction and wear tester in a ring-on-block contact configuration. The wear mechanisms of the bronze–graphite composite were discussed based on examination of the worn surface morphologies of both the composite block and the stainless steel ring by means of scanning electron microscopy equipped with an energy dispersion spectrometry and on determination of some typical elements on the worn surfaces by means of X-ray photoelectron spectroscopy. It was found that the friction coefficient was higher under water lubrication than that under dry sliding and it showed margined change with increasing load under the both sliding conditions. A considerably decreased wear rate of the bronze–graphite composite was registered under water-lubricated sliding than under dry sliding, though it rose significantly at a relatively higher load. This was attributed to the hindered transfer of the composite onto the counterpart steel surface under water-lubricated sliding and the cooling effect of the water as a lubricant, while its stronger transfer onto the steel surface accounted for its higher wear rate under dry sliding. Thus, the bronze–graphite composite with much better wear-resistance under water-lubricated sliding than under dry sliding against the stainless steel could be a potential candidate as the tribo-material in aqueous environment.  相似文献   

16.
Phenolic resin (PF) and molybdic acid–modified phenolic (Mo-PF) have been synthesized and developed and combined with polyfluo wax (PFW) to fabricate PF-PFW and Mo-PF-PFW composite coatings. The effects of applied load and sliding speed on the tribological properties of the phenolic composite coating were evaluated using a block-on-ring wear tester. Compared to the PF composite coating, the Mo-PF displayed a lower friction coefficient and a higher wear life under all tested conditions. Scanning electron microscope (SEM) investigation showed that the Mo-PF composite coating had a smooth worn surface after the friction test, and a continuous and uniform transfer film was formed on the surface of the counterpart ring. The improved tribological properties of Mo-PF composite coating resulted from its enhanced thermal properties.  相似文献   

17.
In this work, the friction and wear properties of Kevlar pulp reinforced epoxy composites against GCr15 steel under dry sliding condition were evaluated on a reciprocating ball-on-block UMT-2MT tribometer. The effects of Kevlar pulp content on tribological properties of the composites were investigated. The worn surface morphologies of neat epoxy and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms discussed. The results show that the incorporation of Kevlar pulp into epoxy contributed to improve the friction and wear behavior considerably. The maximum wear reduction was obtained when the content of Kevlar pulp is 40 vol%. The friction coefficient of epoxy and its composites increased with load while increase in the sliding frequency induced a reverse effect. Fatigue wear and scuffing were notable for the neat epoxy. The fatigue cracks were greatly abated when the filler content was 40 vol%. The wear grooves appeared on the worn surface at higher filler content.  相似文献   

18.
The friction and wear properties of the polyetheretherketone (PEEK) based composites filled with 5 mass% nanometer or micron Al2O3 with or without 10 mass% polytetrafluroethylene (PTFE) against the medium carbon steel (AISI 1045 steel) ring under the dry sliding condition at Amsler wear tester were examined. A constant sliding velocity of 0.42 m s−1 and a load of 196 N were used in all experiments. The average diameter 250 μm PEEK powders, the 15 or 90 nm Al2O3 nano-particles or 500 nm Al2O3 particles and/or the PTFE fine powders of diameter 50 μm were mechanically mixed in alcohol, and then the block composite specimens were prepared by the heat compression moulding. The homogeneously dispersion of the Al2O3 nano-particles in PEEK matrix of the prepared composites was analyzed by the atomic force microscopy (AFM). The wear testing results showed that nanometer and micron Al2O3 reduced the wear coefficient of PEEK composites without PTFE effectively, but not reduced the friction coefficient. The filling of 10 mass% PTFE into pure PEEK resulted in a decrease of the friction coefficient and the wear coefficient of the filled composite simultaneously. However, when 10 mass% PTFE was filled into Al2O3/ PEEK composites, the friction coefficient was decreased and the wear coefficient increased. The worn scars on the tested composite specimen surfaces and steel ring surfaces were observed by scanning electron microscopy (SEM). A thin, uniform, and tenacious transferred film on the surface of the steel rings against the PEEK composites filled with 5 mass% 15 nm Al2O3 particles but without PTFE was formed. The components of the transferred films were detected by energy dispersive spectrometry (EDS). The results indicated that the nanometer Al2O3 as the filler, together with PEEK matrix, transferred to the counterpart ring surface during the sliding friction and wear. Therefore, the ability of Al2O3 to improve the wear resistant behaviors is closely related to the ability to improve the characteristics of the transfer film.  相似文献   

19.
The tribological behavior of the spun Kevlar fabric composites filled with polyfluo wax (PFW) and LaF3 were evaluated using a pin-on-disc friction and wear tester under variable applied load and rotating speed. The worn surface and transfer film of the composites were then examined with SEM. The results indicated that the oxidation of PFW after curing and viscous flow characteristic of PFW in friction process were beneficial to the formation of the compact, uniform and smooth transfer film, corresponding to the excellent wear resistance of the composite filled with 15 wt% PFW. The corresponding wear mechanisms were also discussed.  相似文献   

20.
Influence of surface roughness on the friction of TiC/a-C nanocomposite coatings while sliding against bearing steel balls in humid air was examined by detailed analyses of the wear surfaces and the wear scar on the ball counterparts by atomic force microscopy, optical, and confocal microscopy. It was observed that the surface roughness of the coatings essentially determines the wear behavior of the ball counterpart, which consequently influences the transfer film formation. A rough coating causes abrasive wear of the steel ball during the running-in period, which impedes the formation of a stable transfer film and leads to higher values of coefficient of friction (CoF). Moreover, the CoF does not show a decreasing trend after the running-in period, although the roughness of the coating was greatly reduced. Replacing the worn ball with a new one after the running-in period yields lower CoF values similar to that observed for a smooth coating. In both of the cases, no wear of the steel ball occurs and a stable transfer film forms and effectively covers the contact area. The influence of the wear debris on the formation of the transfer film is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号