首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The retrieval of ocean color radiometry from space-based sensors requires on-orbit vicarious calibration to achieve the level of accuracy desired for quantitative oceanographic applications. The approach developed by the NASA Ocean Biology Processing Group (OBPG) adjusts the integrated instrument and atmospheric correction system to retrieve normalized water-leaving radiances that are in agreement with ground truth measurements. The method is independent of the satellite sensor or the source of the ground truth data, but it is specific to the atmospheric correction algorithm. The OBPG vicarious calibration approach is described in detail, and results are presented for the operational calibration of SeaWiFS using data from the Marine Optical Buoy (MOBY) and observations of clear-water sites in the South Pacific and southern Indian Ocean. It is shown that the vicarious calibration allows SeaWiFS to reproduce the MOBY radiances and achieve good agreement with radiometric and chlorophyll a measurements from independent in situ sources. We also find that the derived vicarious gains show no significant temporal or geometric dependencies, and that the mission-average calibration reaches stability after approximately 20-40 high-quality calibration samples. Finally, we demonstrate that the performance of the vicariously calibrated retrieval system is relatively insensitive to the assumptions inherent in our approach.  相似文献   

2.
Spaceborne ocean color sensors require vicarious calibration to sea-truth data to achieve accurate water-leaving radiance retrievals. The assumed requirements of an in situ data set necessary to achieve accurate vicarious calibration were set forth in a series of papers and reports developed nearly a decade ago, which were embodied in the development and site location of the Marine Optical BuoY (MOBY). Since that time, NASA has successfully used data collected by MOBY as the sole source of sea-truth data for vicarious calibration of the Sea-viewing Wide field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer instruments. In this paper, we make use of the 10-year, global time series of SeaWiFS measurements to test the sensitivity of vicarious calibration to the assumptions inherent in the in situ requirements (e.g., very low chlorophyll waters, hyperspectral measurements). Our study utilized field measurements from a variety of sources with sufficient diversity in data collection methods and geophysical variability to challenge those in situ restrictions. We found that some requirements could be relaxed without compromising the ability to vicariously calibrate to the level required for accurate water-leaving radiance retrievals from satellite-based sensors.  相似文献   

3.
Using reflectance models for color scanner calibration   总被引:3,自引:0,他引:3  
We examine the use of linear spectral reflectance models for calibrating a color scanner to generate device-independent CIE XYZ values from scanner vectors. Polynomial regression approaches to color scanner calibration use parameterized functions to approximate the calibration mapping over a set of training colors. These approaches can perform poorly if the parameterized functions do not accurately model the structure of the desired calibration mapping. Several studies have shown that linear reflectance models accurately characterize a wide range of materials. By viewing color scanner calibration as reflectance estimation, we can incorporate linear reflectance models into the calibration process. We show that in most cases linear models do not constrain the calibration problem sufficiently to allow exact recovery of X, Y, Z from a scanner vector obtained with three filters. By examining a series of methods that exploit information about reflectance functions, however, we show that reflectance information can be used to improve the accuracy of calibration over that of standard methods applied to the same set of inputs.  相似文献   

4.
Analytic model of ocean color   总被引:5,自引:0,他引:5  
Ocean color is determined by spectral variations in reflectance at the sea surface. In the analytic model presented here, reflectance at the sea surface is estimated with the quasi-single-scattering approximation that ignores transspectral processes. The analytic solutions we obtained are valid for a vertically homogeneous water column. The solution provides a theoretical expression for the dimensionless, quasi-stable parameter (r), with a value of ~0.33, that appears in many models in which reflectance at the sea surface is expressed as a function of absorption coefficient (a) and backscattering coefficient (b(b)). In the solution this parameter is represented as a function of the mean cosines for downwelling and upwelling irradiances and as the ratio of the upward-scattering coefficient to the backscattering coefficient. Implementation of the model is discussed for two cases: (1) that in which molecular scattering is the main source of upwelling light, and (2) that in which particle scattering is responsible for all the upwelled light. Computations for the two cases are compared with Monte Carlo simulations, which accounts for processes not considered in the analytic model (multiple scattering, and consequent depth-dependent changes in apparent optical properties). The Monte Carlo models show variations in reflectance with the zenith angle of the incident light. The analytic model can be used to reproduce these variations fairly well for the case of molecular scattering. For the particle-scattering case also, the analytic and Monte Carlo models show similar variations in r with zenith angle. However, the analytic model (as implemented here) appears to underestimate r when the value of the backscattering coefficient b(b) increases relative to the absorption coefficient a. The errors also vary with the zenith angle of the incident light field, with the maximum underestimate being approximately 0.06 (equivalent to relative errors from 12 to 17%) for the range of b(b)/a studied here. One implication of this result is that the model could also be used to obtain approximate solutions for the Q factor, defined for a given look angle as the ratio of the upwelling irradiance at the surface to the upwelling radiance at the surface at that angle. This is a quantity that is important in remote-sensing applications of ocean-color models. An advantage of the model discussed here is that its implementation requires inputs that are in principle accessible only in a remote-sensing context.  相似文献   

5.
The Halogen Occultation Experiment (HALOE) conducted satellite solar occultation measurements for 14 years ending on 21 November 2005. HALOE contained a calibration wheel, which included three neutral density filters that were used to examine response linearity through a combination of ground and on-orbit measurements. Although measurement uncertainties preclude a confident assessment of the true extent of nonlinearity, the on-orbit data lead to the conclusion that any existing response nonlinearity has changed by less than 2% over the mission lifetime. This conclusion eliminates a potentially significant uncertainty when using HALOE data for studies of long-term atmospheric trends.  相似文献   

6.
Wang M 《Applied optics》1999,38(3):451-455
Using the reciprocal equation derived by Yang and Gordon [Appl. Opt. 36, 7887-7897 (1997)] for atmospheric diffuse transmittance of the ocean-atmosphere system, I examined the accuracy of an analytical equation proposed by Gordon et al. [Appl. Opt. 22, 20-36 (1983)] in computing the atmospheric diffuse transmittance for wavelengths from 412 to 865 nm for both a pure Rayleigh and a two-layer Rayleigh-aerosol atmosphere overlying a flat Fresnel-reflecting ocean surface. It was found that for viewing angles up to approximately 40 degrees , the analytical formula produces errors usually between 2% and 3% for nonabsorbing and weakly absorbing aerosols and for aerosol optical thicknesses tau(a) 相似文献   

7.
Yan B  Stamnes K  Toratani M  Li W  Stamnes JJ 《Applied optics》2002,41(30):6243-6259
For the atmospheric correction of ocean-color imagery obtained over Case I waters with the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) instrument the method currently used to relax the black-pixel assumption in the near infrared (NIR) relies on (1) an approximate model for the nadir NIR remote-sensing reflectance and (2) an assumption that the water-leaving radiance is isotropic over the upward hemisphere. Radiance simulations based on a comprehensive radiative-transfer model for the coupled atmosphere-ocean system and measurements of the nadir remote-sensing reflectance at 670 nm compiled in the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) database are used to assess the validity of this method. The results show that (1) it is important to improve the flexibility of the reflectance model to provide more realistic predictions of the nadir NIR water-leaving reflectance for different ocean regions and (2) the isotropic assumption should be avoided in the retrieval of ocean color, if the chlorophyll concentration is larger than approximately 6, 10, and 40 mg m(-3) when the aerosol optical depth is approximately 0.05, 0.1, and 0.3, respectively. Finally, we extend our scope to Case II ocean waters to gain insight and enhance our understanding of the NIR aspects of ocean color. The results show that the isotropic assumption is invalid in a wider range than in Case I waters owing to the enhanced water-leaving reflectance resulting from oceanic sediments in the NIR wavelengths.  相似文献   

8.
一种运用倾角传感器的阵形修正算法   总被引:1,自引:0,他引:1       下载免费PDF全文
垂直水听器阵在实际海洋环境中通常呈现出一定的倾斜状态,各阵元之间存在水平相对位移,对其性能带来很大影响.为了消除阵倾斜带来的影响,提出了一种运用倾角传感器进行阵形修正的算法.具体实现步骤为,首先用多个倾角传感器测得垂直阵上不同位置的倾角,然后通过求解线性方程组以及傅里叶级数分解的方法,利用倾角数据拟合出阵形的函数曲线,...  相似文献   

9.
The conventional frequency calibration devices using the color television subcarrier, utilize a frequency synthesizer to generate the calibrated frequency signal into the signal which is the same in nominal frequency with the chroma subcarrier signal. Then it is calibrated by the phase comparison method with the 3.57 MHz chroma subcarrier signal. This paper describes a new method and does not use the frequency synthesizer but uses a simpler device to accomplish the calibration. The measuring accuracy is better than that of conventional devices  相似文献   

10.
The surface reflectance is one of the most critical parameters during a field vicarious calibration. Traditional methods to measure the surface reflectance require personnel at the test site. A ground-viewing radiometer is built to measure the surface reflectance automatically. The radiometer has eight channels in the wavelength range from 400 nm to 1550 nm. The optical system is temperature controlled. A feedback resistor calculation method is introduced that is used to obtain a reasonable signal. Solar radiation-based calibration and two other laboratory methods are used to obtain the absolute calibration coefficients of the radiometer. The average difference in top-of atmosphere spectral radiance is less than 5% between the nine bands of S-NPP and automated vicarious calibration for eight months. The difference of apparent radiance between the results of OLI and automated vicarious calibration is mostly within 5%, therefore, the radiometer works effectively.  相似文献   

11.
Wang M 《Applied optics》2006,45(17):4122-4128
Effects of the ocean surface reflection for solar irradiance on the normalized water-leaving radiance in the visible wavelengths are evaluated and discussed for various conditions of the atmosphere, solar-zenith angles, and wind speeds. The surface reflection effects on water-leaving radiance are simply due to the fact that the radiance that is backscattered out of the water is directly proportional to the downward solar irradiance just beneath the ocean surface. The larger the solar-zenith angle, the less the downward solar irradiance just beneath the ocean surface (i.e., more photons are reflected by the ocean surface), leading to a reduced value of the radiance that is backscattered out of the ocean. For cases of large solar-zenith angles, the effects of surface irradiance reflection need to be accounted for in both the satellite-derived and in situ measured water-leaving radiances.  相似文献   

12.
Semianalytical (SA) ocean color models have advantages over conventional band ratio algorithms in that multiple ocean properties can be retrieved simultaneously from a single water-leaving radiance spectrum. However, the complexity of SA models has stalled their development, and operational implementation as optimal SA parameter values are hard to determine because of limitations in development data sets and the lack of robust tuning procedures. We present a procedure for optimizing SA ocean color models for global applications. The SA model to be optimized retrieves simultaneous estimates for chlorophyll (Chl) concentration, the absorption coefficient for dissolved and detrital materials [a(cdm)(443)], and the particulate backscatter coefficient [b(bp)(443)] from measurements of the normalized water-leaving radiance spectrum. Parameters for the model are tuned by simulated annealing as the global optimization protocol. We first evaluate the robustness of the tuning method using synthetic data sets, and we then apply the tuning procedure to an in situ data set. With the tuned SA parameters, the accuracy of retrievals found with the globally optimized model (the Garver-Siegel-Maritorena model version 1; hereafter GSM01) is excellent and results are comparable with the current Sea-viewing Wide Field-of-view sensor (SeaWiFS) algorithm for Chl. The advantage of the GSM01 model is that simultaneous retrievals of a(cdm)(443) and b(bp)(443) are made that greatly extend the nature of global applications that can be explored. Current limitations and further developments of the model are discussed.  相似文献   

13.
C Hu  L Feng  Z Lee  CO Davis  A Mannino  CR McClain  BA Franz 《Applied optics》2012,51(25):6045-6062
Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past and current sensors used different signal levels, formats, and conventions to specify these critical parameters, making it difficult to make cross-sensor comparisons or to establish standards for future sensor design. The goal of this study is to quantify these parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers. Using measurements from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODISA) under various solar zenith angles (SZAs), typical (Ltypical) and maximum (Lmax) at-sensor radiances from the visible to the shortwave IR were determined. The Ltypical values at an SZA of 45° were used as constraints to calculate SNRs of 10 multiband sensors at the same Ltypical radiance input and 2 hyperspectral sensors at a similar radiance input. The calculations were based on clear-water scenes with an objective method of selecting pixels with minimal cross-pixel variations to assure target homogeneity. Among the widely used ocean color sensors that have routine global coverage, MODISA ocean bands (1?km) showed 2-4 times higher SNRs than the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (1?km) and comparable SNRs to the Medium Resolution Imaging Spectrometer (MERIS)-RR (reduced resolution, 1.2?km), leading to different levels of precision in the retrieved Chl data product. MERIS-FR (full resolution, 300?m) showed SNRs lower than MODISA and MERIS-RR with the gain in spatial resolution. SNRs of all MODISA ocean bands and SeaWiFS bands (except the SeaWiFS near-IR bands) exceeded those from prelaunch sensor specifications after adjusting the input radiance to Ltypical. The tabulated Ltypical, Lmax, and SNRs of the various multiband and hyperspectral sensors under the same or similar radiance input provide references to compare sensor performance in product precision and to help design future missions such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Pre-Aerosol-Clouds-Ecosystems (PACE) mission currently being planned by the U.S. National Aeronautics and Space Administration (NASA).  相似文献   

14.
Gordon HR  Du T  Zhang T 《Applied optics》1997,36(27):6938-6948
We provide an analysis of the influence of instrument polarization sensitivity on the radiance measured by spaceborne ocean color sensors. Simulated examples demonstrate the influence of polarization sensitivity on the retrieval of the water-leaving reflectance rho(w). A simple method for partially correcting for polarization sensitivity-replacing the linear polarization properties of the top-of-atmosphere reflectance with those from a Rayleigh-scattering atmosphere-is provided and its efficacy is evaluated. It is shown that this scheme improves rho(w) retrievals as long as the polarization sensitivity of the instrument does not vary strongly from band to band. Of course, a complete polarization-sensitivity characterization of the ocean color sensor is required to implement the correction.  相似文献   

15.
An autonomous method for calibrating the reference flat surface of an interferometer is proposed with the uncertainty analysis. The method consists of three phases; the first step is multiple rotating shifts of a specimen, the second is a linear shift, and the last is multiple rotating shifts again. The profile of the reference flat surface is basically determined by the linear shift. The linear shift errors that occurred during the linear shift are identified by the rotating shifts. The rotating shift errors caused by the rotating shifts can be compensated and the residual uncertainty can be reduced in proportion to the square root of the number of rotating shifts per one revolution. Finally, the uncertainty analysis is carried out in detail.  相似文献   

16.
Wireless measurement of temperature using surface acoustic waves sensors   总被引:1,自引:0,他引:1  
Surface acoustic wave (SAW) devices can be used as wireless sensor elements, called SAW transponders, for measuring physical quantities such as temperature that do not need any power supply and may be accessed wirelessly. A complete wireless sensor system consists of one or more such SAW transponders and a local radar transceiver. The SAW transponder receives an RF burst in the VHF/UHF band transmitted by the radar transceiver. The reader unit performs a radar measurement of the impulse response of the SAW transponder via a high-frequency electromagnetic radio link. A temperature variation changes the SAW velocity and thereby the response pattern of the SAW device. By analyzing the time delay between backscattered pulses with different time delays we get a rough estimation of the temperature of the SAW transponder. By using this information the ambiguity of +/-2pi in the phase differences between the pulses can be eliminated, which provides an overall and unambiguous temperature resolution of +/-0.2 degrees C.  相似文献   

17.
Test benches for calibrating heat flux sensors at temperatures of 500–1000 K are described, and the results of such calibrations are presented.  相似文献   

18.
Stubbs DD  Lee SH  Hunt WD 《Analytical chemistry》2003,75(22):6231-6235
Vapor sensors, aka electronic noses, are becoming an increasingly popular analytical tool for detection and identification of small molecules in the gas phase. In this paper, we present the results of a series of experiments demonstrating real-time vapor phase detection of cocaine molecules. A distinctive response or signature was observed under laboratory conditions in which the cocaine vapors were presented using an INEL vapor generator and under "field" conditions facilitated by the Georgia Bureau of Investigation (GBI) Crime Lab. For these experiments, the sensor component was a two-port resonator on ST-X quartz with a center frequency of approximately 250 MHz. On this cut of quartz, a temperature-compensated surface acoustic wave is generated via an interdigital transducer. Antibenzoylecgonine (anti-BZE) antibodies are attached to the electrodes on the device surface via a protein-A cross linker. We observed a large transient frequency shift accompanied by baseline shift with the anti-BZE coated sensor. After repeated experiments and the use of numerous controls, we believe that we have achieved real time molecular recognition of cocaine molecules.  相似文献   

19.
SAW devices may be configured as strain sensors, providing passive, wireless strain measurement in demanding conditions. A key consideration is the modeling of the sensors, enabling different device designs to be considered. This paper presents a simulation scheme using coupling-of-modes (COM) analysis which allows both the frequency response of a SAW strain sensor and its bias sensitivity to be evaluated. Example applications are presented to demonstrate the use of the model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号