共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解正丁醛在还原反萃分离铀、钚、镎过程中的作用,以正丁醛为还原剂,进行了硝酸水溶液反萃含U(Ⅵ)、Np(Ⅵ)或U(Ⅵ)、Np(Ⅵ)、Pu(Ⅵ)的TBP/煤油中Np的实验研究,测定了串级实验时Np在各萃取器中的分布,讨论了正丁醛、镎、铀、硝酸浓度、相比等对镎在萃取器中分布的影响。单级实验结果表明,正丁醛的加入和延长正丁醛与镎的相互作用时间,有利于从有机相中反萃镎;正丁醛的加入对铀、钚分配比的影响不 相似文献
2.
镎的提取和分离是后处理领域重点关注的研究课题之一。甲基肼作为一种有机无盐试剂,其还原Np(Ⅵ)的速率快于还原Pu(Ⅳ)的速率,理论上可以利用其反应速率上的差异来实现镎与钚的分离。为了探索甲基肼还原反萃分离镎、钚的可行性,本文采用单级萃取池研究了甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)的过程。通过考察还原剂浓度、硝酸浓度以及反应温度和搅拌速率等条件对甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)过程的影响,确定了Np(Ⅵ)和Pu(Ⅳ)反萃动力学方程和表观活化能。通过所得的动力学方程得出甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)的半反应时间,并对Np(Ⅵ)和Pu(Ⅳ)分离过程的工艺进行了初步探索。 相似文献
3.
镎的提取和分离是国际后处理领域重点关注的研究课题之一。在Purex流程中,硝酸肼常被用来作为亚硝酸的清扫剂,此外,由于硝酸肼对Np(VI)和Pu(IV)的氧化还原反应具有选择性,理论上可以利用其反应速率上的差异来实现镎与铀钚的分离。为探索硝酸肼分离镎/钚工艺提供可行性,本文采用单级萃取设备研究了硝酸肼还原反萃Np和Pu的过程。通过研究硝酸浓度、硝酸肼浓度和反应温度对还原反萃过程的影响,确定了Np(VI)和Pu(IV)反萃动力学方程和表现活化能。进一步通过动力学方程得出硝酸肼还原反萃Np(VI)和Pu(IV)的半反应时间,并对Np(VI)/Pu(IV)分离过程的工艺进行了初步探索。 相似文献
4.
二正辛基亚砜萃取铀、钚、钍和镎 总被引:4,自引:0,他引:4
本文报道了二正辛基亚砜(DOSO)—二甲苯从硝酸介质中萃取铀、钚、钍和镎的实验结果。DOSO对这些元素的萃取规律类似于TBP,但分配系数(D)比TBP高,尤其是对钚。上述元素的D值均随水相HNO_3浓度增加而增加,达到最大值后下降。用斜率法测得铀、钚、镎的溶剂化数均为2,钍为3,硝酸为1。本工作对盐析剂、络合阴离子(C_2O_4~(2-)、F~-、SO_4~(2-)等)、温度等对萃取的影响以及铀、钚的反萃条件进行了研究,还计算了萃取平衡常数和铀的ΔH值。 相似文献
5.
铀钚萃取洗涤-共反萃工艺Ⅰ.串级工艺优化 总被引:1,自引:0,他引:1
快堆燃料后处理是实现快堆燃料闭式循环的关键环节之一,快堆乏燃料中裂变产物含量高,进行后处理需要多个铀钚萃取洗涤-共反萃循环才能达到去污效果。本研究针对快堆乏燃料高钚浓度和需要多个萃取洗涤 共反萃循环净化裂变产物的特点,采用模拟料液通过多次串级实验,确定了满足铀钚收率及避免钚聚合的铀钚萃取洗涤-共反萃工艺,实验结果表明,1A铀、钚萃取收率分别为99.995%和99.996%,1B铀、钚反萃收率分别为99.936%和99.996%。 相似文献
6.
铀产品中镎和钚的分离与测定方法 总被引:1,自引:0,他引:1
为了提高分离效果,避免测量过程中铀基体的干扰,满足核燃料后处理质量控制分析的要求,建立了氩气加压排空阴离子交换系统用于铀产品中Np和Pu的同时分离与测定的方法.模拟样品分离与测定结果表明:采用该系统可快速有效实现铀产品中Np和Pu的分离,Np和Pu对铀的去污系数平均值分别为8.6×104,9.6×104,避免了测量过程中铀基体的干扰,Np和Pu的平均回收率分别为78%(n=6)和86%(n=6). 相似文献
7.
比较研究了混合三烷基氧膦(TRPO)-磷酸三丁酯(TBP)/煤油混合体系和TRPO/煤油体系对铀和硝酸的萃取含量,结果表明,混合体系的萃取容量比TRPO/煤油体系高。测定了20%TRPO-20%TBP/煤油混合体系对二十余种离子的萃取分配比,结果表明在较宽的NHO3浓度范围(0.5-5mol/L)内,该混合体系对低浓度UO2^2 、低浓度U^4 ,Pu^4 ,Pu^3 ,NpO2^2 ,Np^4 都有较高的萃取能力;低酸条件(<1.0mol/L)下,混合体系对TcO4^-1,Am^3 ,Eu^3 ,Y^3 有较高的分配比;混合体系对NpO2^ ,Sr^2 ,Cs^ 等的萃取能力较弱。TRPO-TBP/煤油有机相中萃取的镅、铀、钚和锝可以分别用高浓度硝酸、碳权铵溶液、羟基乙酸和高浓度硝酸(或碳酸盐)反萃下来。 相似文献
8.
亚硝酸与正丁醛和Np(Ⅵ)反应的动力学研究 总被引:2,自引:2,他引:0
研究了(1)HNO2与正丁醛的反应,得速率方程为:-dcHNO2/dt-k1cHNO2.cn-c3H7CHO.cHNO3,在20℃、I=2.0mol/kg时,速率常数K1=0.76l^2(mol^2.min)(2)在固定1.0mol/lHNO3条件下,HNO2与Np(Ⅵ)的反应,得速率方程为:-dcNp(Ⅵ)CHNO2在20℃、I=2.0mol/kg时,表观速率常数k3^1=93l/mo 相似文献
9.
10.
研究了TBP-DTPA配位萃取体系中铀、镎、钚的一些氧化还原反应。实验结果表明,在TBP-DTPA体系中,用U(Ⅳ)能迅速地把Pu(Ⅳ)和Np(Ⅴ)还原为Pu(Ⅲ)和Np(Ⅳ);而H2O2能迅速地将U(Ⅳ)氧化至U(Ⅵ),但对Pu(Ⅲ)和Np(Ⅳ)的氧化速度相对较慢,Pu(Ⅲ)能氧化到Pu(Ⅵ),而Np(Ⅳ)只能氧化到Np(Ⅴ)。 相似文献
11.
本文报道了用逆流萃取串级实验方法研究Purex过程钚线2 A槽镎走向控制的实验结果。研究了从Purex过程中放废液(2AW 2DW)中用过氧化氢,硝酸肼-亚硝酸钠、硝酸肼-硝酸羟胺-发烟硝酸作氧化还原剂,定量共萃镎、钚、铀的工艺条件。还研究了定量反萃镎和分离钚、铀的工艺条件。按所推荐的工艺条件,钚线2 AW中镎回收率可达92-95%。2 M共萃槽中镎与钚的回收率均大于99%,铀回收率大于99.99%。2 N反萃槽中镎反萃率可达99.5—99.9%。镎铀分离系数达1.4×10~4—1.6×10~4,镎钚分离系数达1.5—13。 相似文献
12.
用十六级分离式混合—离心澄清萃取装置,在20-24℃,30-34℃,45-50℃等不同温度下进行了3B槽硝酸羟胺还原反萃钚的实验。结果表明,钚的收率均可达99.9%以上。在20-24℃时,有机相出口级附近几级的钚浓度较高,实验条件一旦波动,有可能造成钚的流失,且钚在萃取设备中有明显的积累。温度升高,14级反萃(停留时间约18min)时,钚的收率基本得到保证。 相似文献
13.
在HNO3-U(Ⅳ)-N2H4-Tc(Ⅶ)-Np(Ⅴ)体系中,Np(Ⅴ)迅速还原为Np(Ⅳ)。对比研究表明,Tc是该体系中Np(Ⅴ)迅速还原的主要原因。该体系中的主要反应是U(Ⅳ)将Tc(Ⅶ)还原为Tc(Ⅳ),进而Tc(Ⅳ)将Np(Ⅴ)还原为Np(Ⅳ)。本文通过串级和台架实验研究了该体系中锝对镎走向的影响。结果表明,Np(Ⅴ)的还原速度随HNO3浓度、初始Tc浓度的增大和温度的升高而加快。在模拟Purex流程铀钚分离工艺的条件下,试管串级和微型混合澄清槽台架实验结果表明,提高1AP料液中Tc(Ⅶ)的浓度、升高反应温度,Np进入1BU中的百分含量增加。 相似文献
14.
研究了DTPA存在时TBP萃取Np(Ⅳ)动力学。研究结果表明,在镎的萃取、反萃过程中HDBP的存在使反应速率变慢;但当体系中含有常量铀时,铀与HDBP结合,提高了镎的萃取和反萃速率 相似文献
15.
DTPA与铀,镎,钚的配位作用:II.DTPA存在时TBP萃取Np(Ⅳ)的… 总被引:1,自引:1,他引:0
研究了DTPA存在时TBP萃取Np(Ⅳ)动力学,研究结果表明,在镎的萃取,反萃过程中HDBP的存在使反应速率变慢,但当体系中含有常量铀时,铀与HDBP结合,提高了镎的萃取和反萃速率。 相似文献
16.
17.
为回收稀TBP萃取流程台架温实验废液中的镎、钚,并为建立废液回收流程提供基础工艺参数,本工作对1AW和1BP进行了萃取剂浓度、萃取反萃相比、氧化还原条件实验。 相似文献
18.
为了进一步优化Purex流程,研究了甲醛肟(FO)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了FO浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)的还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加甲醛肟的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段12级,补充萃取段4级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U和Pu 的回收率均大于99.99%;铀中去钚的分离因子SF(Pu/U)=1.0×104;钚中去铀的分离因子SF(U/Pu)=8.3×104。FO作为新型络合 还原反萃取剂,可有效实现铀钚分离。 相似文献
19.
亚砜萃取铀、钚、钍、镎及裂片元素已进行过研究。本文研究亚砜和TBP对铀的协同萃取。关于亚砜的协萃效应许多人已进行过研究,结果表明,亚砜不仅与不同类型的萃取剂具有协同作用,而且两种不同亚砜混合时也存在协同效应。Svbramanian 相似文献
20.
研究了氨基羟基脲(HSC)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了HSC浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加氨基羟基脲的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段10级,补充萃取段6级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U的收率大于99.99%,Pu的收率大于99.99%;铀中去钚的分离因数SFPu/U=2.8×104;钚中去铀的分离因数SFU/Pu=5.9×104。HSC作为还原反萃取剂,可有效实现铀钚分离。 相似文献