首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper presents the operating principle and steady-state analysis of a novel excitation scheme for a stand-alone three-phase induction generator that supplies single-phase loads. The phase windings and excitation capacitances are arranged in the form of the Smith connection and the excitation scheme is referred to as the SMSEIG. In addition to providing the reactive power for self-excitation, the capacitances also act as phase balancers. With this novel excitation scheme, isolated single-phase loads can be supplied with good phase balance in the induction machine, resulting in high efficiency, large power output, and quiet machine operation. Performance analysis is based on the method of symmetrical components, from which the input impedance of the generator can be determined. Numerical solution of a simplified equivalent circuit for the machine variables, namely the excitation frequency and magnetizing reactance, enables the generator performance to be evaluated for any load and speed. With the aid of a phasor diagram, the conditions for achieving perfect phase balance are deduced and a method to compute the capacitances required is developed. Experimental investigations on a 2.2-kW induction machine confirm the feasibility of the SMSEIG.  相似文献   

2.
This paper presents a steady-state analysis of a novel single-phase self-regulated self-excited induction generator which employs a three-phase machine. Performance equations are derived using the method of symmetrical components, while the pattern search method of Hooke and Jeeves is used for the determination of the machine variables. The advantages of the generator include simple circuit configuration, small voltage regulation, good phase balance, and large power output. With an appropriate choice of the series and shunt capacitances, a nearly balanced operating condition can be obtained for a certain load. The theoretical analysis is validated by experiments performed on a small induction machine  相似文献   

3.
This paper presents transient performance of a stand-alone self-excited induction generator (SEIG) under unbalanced excitation capacitors. An approach based on a three-phase induction machine model is employed to derive dynamic equations of an isolated SEIG under unbalanced conditions. The neutral points of both a Y-connected excitation capacitor bank and Y-connected stator windings of the SEIG is connected together through a neutral line. Experimental results obtained from a laboratory 1.1 kW induction machine driven by a DC motor are also performed to confirm the feasibility and effectiveness of the proposed method  相似文献   

4.
Steady-state analysis and performance characteristics of a three-phase isolated star or delta connected induction generator self-excited with a single capacitor are discussed. Analytical expressions are derived to determine the no-load capacitance required to maintain self-excitation. The performance characteristics of a self-excited induction generator are affected by the terminal capacitance, C, machine speed, ν, and the load parameters. Generally, the value of C has a stronger influence on the performance characteristics and should be selected such that the terminal voltage, Vt, is near its rated value while keeping C close to its lower limiting value. The accuracy of the method was experimentally verified, and good agreement is obtained between the two sets of results. The performance characteristics of star and delta connected induction generators are compared. In the mode of operation discussed, the voltages and currents are unbalanced with relatively high losses and rather low efficiency. Among the two configurations discussed, the delta connected generator offers a higher current and lower terminal voltage and a wider range of excitation capacitance  相似文献   

5.
Capacitance requirements of self-excited induction generators   总被引:6,自引:0,他引:6  
A simple method for computing the minimum value of capacitance, C min. required for initiating voltage build-up in a three-phase self-excited induction generator (SEIG) is presented. Based on the steady-state equivalent circuit model, a consideration of the circuit conductances yields a sixth-degree polynomial in the per-unit frequency. The polynomial can be solved for real roots, which enables the value of Cmin to be calculated. Critical values of load impedance and speed, below which the machine fails to self-excite irrespective of the capacitance used, are found to exist. Closed form solutions for Cmin are derived for no-load and inductive loads. Using the same numerical approach, an interative procedure is developed for predicting the capacitance required for maintaining the terminal voltage at a preset value when the generator is supplying load. Experimental results obtained on a 2 kW induction machine confirm the feasibility and accuracy of the proposed methods  相似文献   

6.
This paper presents a unified method of analysis for a three-phase induction generator self-excited with a single capacitance and supplying a single-phase load. Symmetrical components analysis is used to establish the input impedance of the generator, while the pattern search method of Hooke and Jeeves enables the per-unit frequency and magnetizing reactance of the machine to be determined, a crucial step in computing the generator performance. Best machine performance is obtained using the Steinmetz connection, with the excitation capacitance connected across the lagging phase. Experiments carried out using a 2.2 kW induction machine confirm the accuracy of the theoretical analysis and the solution method  相似文献   

7.
This paper presents a practical method for computing the minimum capacitance required to initiate voltage build-up in a three-phase induction generator self-excited with a single capacitance and supplying a single-phase load. Attention is focused on the Steinmetz connection which gives superior performance over the plain single-phasing mode of operation. From a consideration of the input impedance of the induction generator and the self-excitation conditions, two nonlinear equations are obtained. Solution of one equation using the Secant method enables the excitation frequency to be determined, and the minimum excitation capacitance can be calculated from the second equation. This solution technique is subsequently employed in an iterative procedure for computing the capacitance required to maintain the terminal voltage at a preset value when the generator is supplying load. Experimental results obtained on a 2-kW induction machine are presented to verify the theoretical analysis where possible  相似文献   

8.
This paper presents a novel approach based on eigenvalue and eigenvalue sensitivity analyses to predict both minimum and maximum values of capacitance required for the self-excitation of a three-phase induction generator. Numerous numerical methods based on steady-state equivalent circuit models have been proposed to find the minimum capacitance of self-excited induction generators by solving simultaneous nonlinear equations. Steady-state and sensitivity analyses of different capacitance values with respect to various system parameters are performed. Transient analyses of the studied induction generator under different loading conditions are also carried out. Experimental results obtained on a 1.1 kW induction machine confirm the feasibility and effectiveness of the proposed approach  相似文献   

9.
This paper presents the steady-state behavior of a series compensated (short-shunt) self-excited six-phase induction generator (SPSEIG) configured to operate as stand-alone electric energy source in conjunction with a hydro power plant. A purely experimental treatment is provided with the emphasis placed on operating regimes that illustrate the advantages of using SPSEIG. In particular, it is shown that the SPSEIG can operate with a single three-phase capacitor bank, so that the loss of excitation or fault at one winding does not lead to the system shutdown. The generator can also supply two separate three-phase loads, which represent an additional advantage. Experimental results include loading transients with independent three-phase resistive and resistive–inductive load at each of the two three-phase winding sets, and measured steady-state characteristics for various load and/or capacitor bank configurations. Practical results for long-shunt configuration are also given for comparative performance evaluation of series compensated SPSEIG.  相似文献   

10.
The performance characteristics of a cage induction machine operating as a self-excited induction generator (SEIG) in stand-alone mode are presented. A static capacitor bank is considered to self-excite the machine and to maintain its terminal voltage constant. The lagging reactive power requirement of self-excited induction generator is obtained for different load values. The effect of speed on the excitation requirement of the cage machine has also been studied. An algorithm is developed to achieve these characteristics using the Newton-Raphson method and a steady-state equivalent circuit of the machine. The developed analytical technique is extended to evaluate the number of steps of switching capacitors for loading the machine up to its full load rating while maintaining the terminal voltage within desired limits. The selection of an optimum terminal voltage corresponding to the maximum output of the machine for its optimum utilization is also made using single-variable optimization  相似文献   

11.
The doubly fed induction generator (DFG) is a variable-speed constant-frequency generator operating in either subsynchronous or supersynchronous mode. The transient behavior of a symmetrically loaded DFG after a three-phase short circuit is presented. Both speed and rotor excitation voltage and frequency remain unchanged during short circuit. The complete mathematical model of the transient state and experimental results are given, along with the transient state equivalent circuit  相似文献   

12.
The analysis of the wind-driven self-excited induction generators (SEIGs) connected to the grid through power converters has been developed in this paper. For this analysis, a method of representing the grid power as equivalent load resistance in the steady-state equivalent circuit of SEIG has been formulated. The technique of genetic algorithm (GA) has been adopted for making the analysis of the proposed system simple and straightforward. The control of SEIG is attempted by connecting an uncontrolled diode bridge rectifier (DBR) and a line commutated inverter (LCI) between the generator terminals and three-phase utility grid. A simple control technique for maximum power point tracking (MPPT) in wind energy conversion systems (WECS), in which the firing angle of the LCI alone needs to be controlled by sensing the rotor speed of the generator has been proposed. The effectiveness of the proposed method of MPPT and method of analysis of this wind-driven SEIG-converter system connected to the grid through power converters has been demonstrated by experiments and simulation. These experimental and simulated results confirm the usefulness and successful working of the proposed system and its analysis.  相似文献   

13.
By using two capacitances and a current injection transformer, a three-phase induction generator can operate with good phase balance and line power factor while delivering power to a single-phase power grid. This paper presents a systematic analysis on this novel induction generator configuration. The solution of the system's inspection equations using the method of symmetrical components enables the steady-state generator performance at any speed to be computed. The conditions for achieving perfect phase balance are deduced from the phasor diagram. It is shown that the capacitances that result in perfect phase balance depend on the generator admittance, power factor angle, as well as the turns-ratio of the current injection transformer. Where possible, the computed results are verified by experiments conducted on a 2-kW induction machine. An experimental investigation on the system waveforms and harmonics is also carried out.  相似文献   

14.
This paper presents a novel approach based on eigenvalue and eigenvalue sensitivity analyses to predict both minimum and maximum values of the capacitance required for the self-excitation of parallel operated three-phase induction generators. Numerous numerical methods based on steady-state equivalent circuit models have been proposed to find the minimum capacitance of a self-excited induction generator by solving simultaneous nonlinear equations. Steady-state and sensitivity analyses of different capacitance values concerning various system limits are performed. Transient analyses of the studied induction generators under different loading conditions are also carried out. The results show those induction generators with different speeds can be operated in parallel properly, but the requirement before they may be connected in parallel is the phase sequence of the running and incoming induction generators must be the same. Experimental results obtained on 1.1 kW induction machines confirm the feasibility and effectiveness of the proposed approach  相似文献   

15.
This paper aims to determine the optimal capacitors required for maximum output power of a single-phase self-excited induction generator (SEIG), using a three-phase machine feeding inductive as well as capacitive loads. The generator consists of a three-phase star-connected induction machine with three capacitors and a single-phase load. The algorithm, which gives directly the values of the optimal capacitors for the maximum power output and the maximum power available, has been developed using the steady-state model of the SEIG and sequential unconstrained minimization technique (SUMT). The variations of the maximum power output with power factor (pf) of loads (both inductive and capacitive) and speed of the SEIG have been presented. The voltage regulation of the generator is small due to the effect of the two series capacitors. Experimental results have shown the effectiveness and accuracy of the developed algorithm.  相似文献   

16.
By varying the effective rotor resistance of a self-excited slip-ring induction generator (SESRIG), the magnitude and frequency of the output voltage can be controlled over a wide speed range. A steady-state analysis based on a normalized equivalent circuit enables the control characteristics to be deduced. For a given stator load impedance, both the frequency and the voltage can be maintained constant as the speed is varied, without changing the excitation capacitance. When the stator load is variable, simultaneous voltage and frequency control requires the excitation capacitance to be changed as the rotor resistance is varied. Experiments performed on a 1.8-kW laboratory machine confirm the feasibility of the method of control. Practical implementation of a closed-loop control scheme for an SESRIG using chopper-controlled rotor resistance is also discussed. With a properly tuned proportional-plus-integral (PI) controller, satisfactory dynamic performance of the SESRIG is obtained. The proposed scheme may be used in a low-cost variable-speed wind energy system for providing good-quality electric power to remote regions.  相似文献   

17.
Single-phase operation of a three-phase induction generator with the Smith connection (SMIG) is analyzed using the method of symmetrical components. It is shown that, despite the asymmetrical nature of the winding connection, balanced currents can be made to flow in the three-phase stator winding. The conditions for achieving perfect phase balance are carefully deduced. With the aid of a phasor diagram, expressions for the line power factor and line current under perfect phase balance are also obtained. The effect of the phase-balancing capacitances on the generator performance is investigated. A simple dual-mode control scheme is also proposed with a view of minimizing the phase imbalance over the practical operating speed range. Experiments conducted on a 2.2 kW induction machine confirm the validity of the theoretical analysis and feasibility of the control method  相似文献   

18.
This paper presents a simple method for finding the suitable value of shunt and series capacitance necessary to initiate self excitation and self-regulation (voltage regulation) in a self-excited six-phase induction generator (SPSEIG) for stand-alone renewable energy generation in conjunction with the hydropower. The problem is formulated as multivariable unconstrained nonlinear optimization problem. The admittance of the equivalent circuit of SPSEIG is taken as an objective function. Frequency and magnetic reactance or speed and magnetic reactance or frequency and capacitive reactance are selected as an independent variables depending upon the operational condition of the machine. Fmincon method is used to solve the optimization problem. Computed results were experimentally verified to validate the analytical approach presented in the paper.  相似文献   

19.
The suitability of using a normal three-phase induction motor as a capacitor self-excited induction generator (SEIG) is illustrated. The thermal limit of the stator windings being the limiting factor, the capacity of the SEIG is determined. The steady-state performance of such induction generators, maintaining a constant terminal voltage, is analyzed under resistive and reaction loads. Typical experimental results are also presented. It was found that, for low power motors, the maximum power that can be extracted as generators is 148% to 160% of the motor rating for resistive loads and 118% to 128% of the motor rating for 0.8 lagging power factor loads. Capacitive reactive volt-ampere (VAR) required to maintain constant voltage at 1.0 p.u. speed is in the range 85% to 140% of the power rating of the motor with resistive loads and 100% to 140% with lagging reactive loads  相似文献   

20.
The configuration of short-shunt self-excited induction generator feeding induction motor loads (SEIG-IM) suffers from excessive transients during startup of motor load under no load and unstable operation. These problems may be due to subsynchronous resonance as obtained with series compensated transmission line or due to the connected load system. The use of damping resistors across series capacitors is proposed to damp out the starting transients and for the stable operation. The steady-state model of short shunt SEIG-IM with damping resistors and resistive and motor load is developed to obtain the values of shunt and series capacitances for optimum voltage regulation. The simulated annealing like approach is used to solve voltage regulation optimization problem. The values of shunt and series capacitances and damping resistance are obtained for optimum voltage regulation under entire loading range and stable operation during starting and loading. The results are experimentally verified, which establish the effectiveness of damping resistance and developed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号