首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The surface reflectance is one of the most critical parameters during a field vicarious calibration. Traditional methods to measure the surface reflectance require personnel at the test site. A ground-viewing radiometer is built to measure the surface reflectance automatically. The radiometer has eight channels in the wavelength range from 400 nm to 1550 nm. The optical system is temperature controlled. A feedback resistor calculation method is introduced that is used to obtain a reasonable signal. Solar radiation-based calibration and two other laboratory methods are used to obtain the absolute calibration coefficients of the radiometer. The average difference in top-of atmosphere spectral radiance is less than 5% between the nine bands of S-NPP and automated vicarious calibration for eight months. The difference of apparent radiance between the results of OLI and automated vicarious calibration is mostly within 5%, therefore, the radiometer works effectively.  相似文献   

2.
The ability to quantify lysozyme is demonstrated for a series of aqueous samples with different degrees of scattering. Near-infrared spectra are collected for two sets of lysozyme/scattering solutions. In both sets of samples, the solutions are composed of lysozyme dissolved in acetate buffer with suspended monodisperse latex microspheres of polystyrene. The diameter of the microspheres is 6.4 microm for the first set and 0.6 microm for the second. For each set, the amount of microspheres range from 0.005 to 0.998 wt %, the lysozyme concentrations range from 0.834 to 28.6 mg/mL, and solution compositions are designed to minimize correlations between the concentration of lysozyme and percentage of microspheres. Near-infrared spectra are collected individually for each set of solutions. Single-beam spectra are collected over the combination spectral range (5000-4000 cm(-1), 2.0-2.5 microm) by transmitting the incident radiation through a 1.5-mm-thick sample that is maintained at 21 degrees C. Partial least-squares calibration models are evaluated individually for each data set both with and without wavelength optimization. Results indicate that models from raw, nonmodified, single-beam spectra are incapable of extracting lysozyme concentration from these highly scattering solutions. Accurate concentration measurements are possible, however, by implementing either a multiplicative scatter correction to the single-beam spectra or by taking the ratio of these single-beam spectra to an appropriate reference spectrum. In addition, digital Fourier filtering of these spectra enhances model performance. The best calibration model in the presence of 6.4-microm microspheres is obtained from multiplicative scatter corrected single-beam spectra over the 4550-4190-cm(-1) spectral range. The mean percent error of prediction (MPEP) and standard error of prediction (SEP) for this model are 2.2% and 0.28 mg/mL, respectively. Likewise, the multiplicative scatter corrected spectra with wavelength optimization provided the best calibration model for the 0.6-microm data set. In this case, the MPEP and SEP are 2.3% and 0.44 mg/mL, respectively. In addition, the ability to predict lysozyme concentrations is evaluated for the situation where the degree of scattering is greater in the predication samples compared to the calibration samples. Differences in the prediction ability are noted between the 6.4- and 0.6-microm data sets.  相似文献   

3.
The retrieval of ocean color radiometry from space-based sensors requires on-orbit vicarious calibration to achieve the level of accuracy desired for quantitative oceanographic applications. The approach developed by the NASA Ocean Biology Processing Group (OBPG) adjusts the integrated instrument and atmospheric correction system to retrieve normalized water-leaving radiances that are in agreement with ground truth measurements. The method is independent of the satellite sensor or the source of the ground truth data, but it is specific to the atmospheric correction algorithm. The OBPG vicarious calibration approach is described in detail, and results are presented for the operational calibration of SeaWiFS using data from the Marine Optical Buoy (MOBY) and observations of clear-water sites in the South Pacific and southern Indian Ocean. It is shown that the vicarious calibration allows SeaWiFS to reproduce the MOBY radiances and achieve good agreement with radiometric and chlorophyll a measurements from independent in situ sources. We also find that the derived vicarious gains show no significant temporal or geometric dependencies, and that the mission-average calibration reaches stability after approximately 20-40 high-quality calibration samples. Finally, we demonstrate that the performance of the vicariously calibrated retrieval system is relatively insensitive to the assumptions inherent in our approach.  相似文献   

4.
We present an overview of the vicarious calibration of the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS). This program has three components: the calibration of the near-infrared bands so that the atmospheric correction algorithm retrieves the optical properties of maritime aerosols in the open ocean; the calibration of the visible bands against in-water measurements from the Marine Optical Buoy (MOBY); and a calibration-verification program that uses comparisons between SeaWiFS retrievals and globally distributed in situ measurements of water-leaving radiances. This paper describes the procedures as implemented for the third reprocessing of the SeaWiFS global mission data set. The uncertainty in the near-infrared vicarious gain is 0.9%. The uncertainties in the visible-band vicarious gains are 0.3%, corresponding to uncertainties in the water-leaving radiances of approximately 3%. The means of the SeaWiFS/in situ matchup ratios for water-leaving radiances are typically within 5% of unity in Case 1 waters, while chlorophyll a ratios are within 1% of unity. SeaWiFS is the first ocean-color mission to use an extensive and ongoing prelaunch and postlaunch calibration program, and the matchup results demonstrate the benefits of a comprehensive approach.  相似文献   

5.
Cuenca J  Sobrino JA 《Applied optics》2004,43(23):4598-4602
One condition for precise multiangle algorithms for estimating sea and land surface temperature with the data from the Advanced Along Track Scanning Radiometer is accurate knowledge of the angular variation of surface emissivity in the thermal IR spectrum region. Today there are very few measurements of this variation. The present study is conducted to provide angular emissivity measurements for five representative samples (water, clay, sand, loam, gravel). The measurements are made in one thermal IR broadband (8-13 microm) and three narrower bands (8.2-9.2, 10.3-11.3, and 11.5-12.5 microm) at angles of 0 degrees-60 degrees (at 5 degrees increments) to the surface normal. The results show a general decrease in emissivity with increasing viewing angles, with the 8.2-9.2-microm channel the most sensitive to this dependence and sand the sample showing the greatest variation.  相似文献   

6.
Spaceborne ocean color sensors require vicarious calibration to sea-truth data to achieve accurate water-leaving radiance retrievals. The assumed requirements of an in situ data set necessary to achieve accurate vicarious calibration were set forth in a series of papers and reports developed nearly a decade ago, which were embodied in the development and site location of the Marine Optical BuoY (MOBY). Since that time, NASA has successfully used data collected by MOBY as the sole source of sea-truth data for vicarious calibration of the Sea-viewing Wide field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer instruments. In this paper, we make use of the 10-year, global time series of SeaWiFS measurements to test the sensitivity of vicarious calibration to the assumptions inherent in the in situ requirements (e.g., very low chlorophyll waters, hyperspectral measurements). Our study utilized field measurements from a variety of sources with sufficient diversity in data collection methods and geophysical variability to challenge those in situ restrictions. We found that some requirements could be relaxed without compromising the ability to vicariously calibrate to the level required for accurate water-leaving radiance retrievals from satellite-based sensors.  相似文献   

7.
Rinsland CP  Benner DC  Devi VM 《Applied optics》1985,24(11):1644-1650
A nonlinear least-squares spectral fitting procedure has been used to derive experimental absolute intensities for over 300 unblended lines belonging to twelve bands of (12)C(16)O2, (13)C(16)O2, (16)O(12)C(18)O, (16)O(12)C(17)O, and (16)O(13)C(18)O in the 5.2-microm region. The spectral data were recorded at 0.01-cm(-1) resolution and room temperature with the Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory on Kitt Peak and have a signal-to-rms noise ratio of 2000-4000. A natural sample of carbon dioxide was used as the sample gas. For each band, the measured line intensities have been analyzed to derive the vibrational band intensity and coefficients of the F factor. The results are compared to the values used to calculate the intensities in the 1982 Air Force Geophysics Laboratory line parameters compilation.  相似文献   

8.
The Hyperspectral Imager for the Coastal Ocean (HICO) presently onboard the International Space Station (ISS) is an imaging spectrometer designed for remote sensing of coastal waters. The instrument is not equipped with any onboard spectral and radiometric calibration devices. Here we describe vicarious calibration techniques that have been used in converting the HICO raw digital numbers to calibrated radiances. The spectral calibration is based on matching atmospheric water vapor and oxygen absorption bands and extraterrestrial solar lines. The radiometric calibration is based on comparisons between HICO and the EOS/MODIS data measured over homogeneous desert areas and on spectral reflectance properties of coral reefs and water clouds. Improvements to the present vicarious calibration techniques are possible as we gain more in-depth understanding of the HICO laboratory calibration data and the ISS HICO data in the future.  相似文献   

9.
Observations of the Moon provide a primary technique for the on-orbit cross calibration of Earth remote sensing instruments. Monthly lunar observations are major components of the on-orbit calibration strategies of SeaWiFS and MODIS. SeaWiFS has collected more than 132 low phase angle and 59 high phase angle lunar observations over 12 years, Terra MODIS has collected more than 82 scheduled and 297 unscheduled lunar observations over nine years, and Aqua MODIS has collected more than 61 scheduled and 171 unscheduled lunar observations over seven years. The NASA Ocean Biology Processing Group Calibration and Validation Team and the NASA MODIS Characterization Support Team use the USGS RObotic Lunar Observatory (ROLO) photometric model of the Moon to compare these time series of lunar observations over time and varying observing geometries. The cross-calibration results show that Terra MODIS and Aqua MODIS agree, band to band, at the 1%-3% level, while SeaWiFS and either MODIS instrument agree at the 3%-8% level. The combined uncertainties of these comparisons are 1.3% for Terra and Aqua MODIS, 1.4% for SeaWiFS and Terra MODIS, and 1.3% for SeaWiFS and Aqua MODIS. Any residual phase dependence in the ROLO model, based on these observations, is less than 1.7% over the phase angle range of -80° to -6° and +5° to +82°. The lunar cross calibration of SeaWiFS, Terra MODIS, and Aqua MODIS is consistent with the vicarious calibration of ocean color products for these instruments, with the vicarious gains mitigating the calibration biases for the ocean color bands.  相似文献   

10.
This paper describes a general strategy for the fabrication of a microthermocouple based on the spatially defined electroless deposition of metal, followed by annealing and electroplating. We present scanning electron microscopy and atomic force microscopy characterizations of the deposition and annealing process, as well as the performance of the microfabricated Ni-Ag thermocouple. The temperature-voltage curve for this Ni-Ag microthermocouple is linear over the range 0-50 degrees C with a slope of 61.9 degrees C mV(-1). The sensitivity of our temperature measurement, which is limited by the uncertainty of our calibration curve, is approximately 1 degrees C. The optimum figure of merit (Z(opt)) is 1.0 x 10(-5) for this type of Ag-Ni thermocouple. We have fabricated microthermocouples ranging in size from 50 to 300 microm. The microthermocouple was integrated into microchannels and used to measure the in-channel temperature rise caused by the following: (1) a simple acid-base reaction, HCl + NaOH --> H2O + NaCl, and (2) an enzyme-catalyzed biochemical reaction, H2O2 + catalase --> H2O + 1/2 O2. We have also profiled the temperature increase in the presence of electroosmotic flow for a 100-, 200-, and 300-microm channel.  相似文献   

11.
Calibration of SeaWiFS. I. Direct techniques   总被引:1,自引:0,他引:1  
We present an overview of the calibration of the Sea-viewing Wide Field-of View Sensor (SeaWiFS) from its performance verification at the manufacturer's facility to the completion of its third year of on-orbit measurements. These calibration procedures have three principal parts: a prelaunch radiometric calibration that is traceable to the National Institute of Standards and Technology; the Transfer-to-Orbit Experiment, a set of measurements that determine changes in the instrument's calibration from its manufacture to the start of on-orbit operations; and measurements of the sun and the moon to determine radiometric changes on orbit. To our knowledge, SeaWiFS is the only instrument that uses routine lunar measurements to determine changes in its radiometric sensitivity. On the basis of these methods, the overall uncertainty in the SeaWiFS top-of-the-atmosphere radiances is estimated to be 4-5%. We also show the results of comparison campaigns with aircraft- and ground-based measurements, plus the results of an experiment, called the Southern Ocean Band 8 Gain Study. These results are used to check the calibration of the SeaWiFS bands. To date, they have not been used to change the instrument's prelaunch calibration coefficients. In addition to these procedures, SeaWiFS is a vicariously calibrated instrument for ocean-color measurements. In the vicarious calibration of the SeaWiFS visible bands, the calibration coefficients are modified to force agreement with surface truth measurements from the Marine Optical Buoy, which is moored off the Hawaiian Island of Lanai. This vicarious calibration is described in a companion paper.  相似文献   

12.
The behavior of a temperature self-compensating, fiber, long-period grating (LPG) device is studied. This device consists of a single 325-microm-period LPG recorded across two sections of single-mode B-Ge-codoped fiber--one section bare and the other coated with a 1-microm thickness of Ag. This structure generates two attenuation bands associated with the eighth and ninth cladding modes, which are spectrally close together (approximately 60 nm). The attenuation band associated with the Ag-coated section is unaffected by changes in the refractive index of the surrounding medium and can be used to compensate for the temperature of the bare-fiber section. The sensor has a resolution of +/-1.0 x 10(-3) for the refractive index and +/-0.3 degrees C for the temperature. The effect of bending on the spectral characteristics of the two attenuation bands was found to be nonlinear, with the Ag-coated LPG having the greater sensitivity.  相似文献   

13.
A new method for fabrication of anodically electrodeposited iridium oxide film pH microelectrodes has been developed in this study. Novel for its tip size (3-10-microm tip diameter), the microelectrode is fabricated in a tapered glass micropipet filled with a low melting point alloy. The tapered end is recessed and platinized. Thereafter, iridium oxide is electrodeposited over the platinized end in the recessed part. The microelectrode has a very short response time (t80 < 5 s) in the pH range of 0-12 with an accuracy of 0.05 pH unit. The pH microelectrode is not affected by most ions and complexing agents of relevance in environmental and biological studies; it can be used in fluids over wide ranges of stirring speeds (0-55 rpm) and temperatures (approximately 5-40 degrees C). Redox agents such as dissolved oxygen and hydrogen peroxide have no effect on the pH response while quinhydrone, ferro- and ferricyanide, and sodium sulfide have marked effects. However, the microelectrode can still be used in any sample when calibration is done in standards having similar redox characteristics.  相似文献   

14.
A small palm-sized, reference spectrometer, mounted on a remote-controlled model helicopter is being developed and tested by the National Physical Laboratory (NPL) in conjunction with City University, London. The developed system will be used as a key element for field vicarious calibration of optical earth observation systems in the visible-near infrared (VNIR) region. The spectrometer is hand held, low weight, and uses a photodiode array. It has good stray light rejection and wide spectral coverage, allowing simultaneous measurements from 400 to 900 nm. The spectrometer is traceable to NPL’s primary standard cryogenic radiometer via a high-temperature metal-carbon eutectic fixed-point blackbody. Once the fixed-point temperature has been determined (using filter radiometry), the eutectic provides a high emissivity and high stability source of known spectral radiance over the emitted spectral range. All wavelength channels of the spectrometer can be calibrated simultaneously using the eutectic transition without the need for additional instrumentation. The spectrometer itself has been characterized for stray light performance and wavelength accuracy. Its long-term and transportation stability has been proven in an experiment that determined the “World’s Bluest Sky”—a process that involved 56 flights, covering 100,000 km in 72 days. This vicarious calibration methodology using a eutectic standard is presented alongside the preliminary results of an evaluation study of the spectrometer characteristics.  相似文献   

15.
Solid laboratory calibration of a nonimaging spectroradiometer   总被引:1,自引:0,他引:1  
Schaepman ME  Dangel S 《Applied optics》2000,39(21):3754-3764
Field-based nonimaging spectroradiometers are often used in vicarious calibration experiments for airborne or spaceborne imaging spectrometers. The calibration uncertainties associated with these ground measurements contribute substantially to the overall modeling error in radiance- or reflectance-based vicarious calibration experiments. Because of limitations in the radiometric stability of compact field spectroradiometers, vicarious calibration experiments are based primarily on reflectance measurements rather than on radiance measurements. To characterize the overall uncertainty of radiance-based approaches and assess the sources of uncertainty, we carried out a full laboratory calibration. This laboratory calibration of a nonimaging spectroradiometer is based on a measurement plan targeted at achieving a 相似文献   

16.
Temperature-dependent structural changes in hydrogen bonds (H-bonds) in microcrystalline cellulose (MCC) were investigated by infrared (IR) and near-infrared (NIR) spectroscopy. The O-H stretching fundamentals and their first overtone bands were employed to explore the structural changes. In order to analyze the overlapping OH bands due to various H-bonds, perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy was applied to the IR and NIR data. Typical spectral variation temperatures were visualized by the PCMW2D correlation analysis. Structural changes in the strong H-bonds in MCC gradually occur in the temperature region of 25-130 degrees C, and they become greater above 130 degrees C. Both OH groups with H-bonds of intermediate strength and very weak H-bonds arise from the structural change of strong H-bonds in the temperature region of 40-90 degrees C, whereas the appearance of the latter OH groups with very weak H-bonds gradually becomes dominant above 90 degrees C. It is revealed from the present study that the glass transition at 184 degrees C induces the changes in the H-bonds in the Ibeta and the O3-H3...O5 intrachain H-bonds. Band assignments for the O-H stretching first overtone vibration region are proposed based on the results of the PCMW2D correlation analyses.  相似文献   

17.
Richter R  Coll C 《Applied optics》2002,41(18):3523-3529
The retrieval of surface emissivity in the 8-14-microm region from remotely sensed thermal imagery requires channel-averaged values of atmospheric transmittance, path radiance, and downwelling sky flux. Band-pass resampling introduces inherent retrieval errors that depend on atmospheric conditions, spectral region, bandwidth, flight altitude, and surface temperature. This simulation study is performed for clear sky conditions and moderate atmospheric water vapor contents. It shows that relative emissivity retrieval errors can reach as much as 3% for broadband sensors (1-2-microm bandwidth) and 0.8% for narrowband instruments (0.15 microm), even for constant surface emissivity. For spectrally varying surface emissivities the relative retrieval error increases for the broadband instrument by approximately 2% in channels with strong emissivity changes of 0.05-0.1. The corresponding retrieval errors for narrowband sensors increase by approximately 3-4%. The channels in the atmospheric window regions with lower transmittance, i.e., 8-8.5 and 12.5-14 microm, are most sensitive to retrieval errors.  相似文献   

18.
A fully integrated gas sensor microsystem is presented, which comprises for the first time a micro hot plate as well as advanced analog and digital circuitry on a single chip. The micro hot plate is coated with a nanocrystalline SnO2 thick film. The sensor chip is produced in an industrial 0.8-microm CMOS process with subsequent micromachining steps. A novel circular micro hot plate, which is 500 x 500 microm(2) in size, features an excellent temperature homogeneity of +/-2% over the heated area (300-microm diameter) and a high thermal efficiency of 6.0 degrees C/mW. A robust prototype package was developed, which relies on standard microelectronic packaging methods. Apart from a microcontroller board for managing chip communication and providing power supply and reference signals, no additional measurement equipment is needed. The on-chip digital temperature controller can accurately adjust the membrane temperature between 170 and 300 degrees C with an error of +/-2 degrees C. The on-chip logarithmic converter covers a wide measurement range between 1 kOmega and 10 MOmega. CO concentrations in the sub-parts-per-million range are detectable, and a resolution of +/-0.1 ppm CO was achieved, which renders the sensor capable of measuring CO concentrations at threshold levels.  相似文献   

19.
Richter R  Müller A 《Applied optics》2003,42(6):1082-1090
Reflectance measurement with spectroradiometers in the solar wavelength region (0.4-2.5 microm) are frequently conducted in the laboratory or in the field to characterize surface materials of artificial and natural targets. The spectral surface reflectance is calculated as the ratio of the signals obtained over the target surface and a reference panel, yielding a relative reflectance value. If the reflectance of the reference panel is known, the absolute target reflectance can be computed. This standard measurement technique assumes that the signal at the radiometer is due completely to reflected target and reference radiation. However, for field measurements in the 2.4-2.5-microm region with the Sun as the illumination source, the emitted thermal radiation is not a negligible part of the signal even at ambient temperatures, because the atmospheric transmittance, and thus the solar illumination level, is small in the atmospheric absorption regions. A new method is proposed that calculates reflectance values in the 2.4-2.5-microm region while it accounts for the reference panel reflectance and the emitted radiation. This technique needs instruments with noise-equivalent radiances of 2 orders of magnitude below currently commercially available instruments and requires measurement of the surface temperatures of target and reference. If the reference panel reflectance and temperature effects are neglected, the standard method yields reflectance errors up to 0.08 and 0.15 units for 7- and 2-nm bandwidth instruments, respectively. For the new method the corresponding errors can be reduced to approximately 0.01 units for the surface temperature range of 20-35 degrees C.  相似文献   

20.
The applicability of the band-stripping and complementary matching method has been demonstrated by the analysis of temperature-dependent near-infrared (NIR) absorption spectra in the 7500-6500 cm(-1) region of oleic acid (cis-9-octadecenoic acid) in the pure liquid state. This method is based on first derivative-second derivative pair (D1-D2) plots and a new concept called the complementary band, cBDi, created by subtracting all the rest of the bands, exclusive of the ith estimated band, eBDi, from an experimental spectrum. The degree of coincidence of both band shapes provides a suitable measure for the quality of fit for each individual component band. It has been confirmed from the present analysis of the NIR spectra of oleic acid measured over a temperature range of 16-79 degrees C that the change of the peak intensity of the component band at around 6915 cm(-1) due to the first overtone of an O-H stretching vibration of the monomer has two transition points around 35 and 55 degrees C. Moreover, the present study has provided new insight into the analysis of temperature-dependent spectral variations of oleic acid. Among the three temperature ranges, 16-35 degrees C, 35-55 degrees C, and 55-79 degrees C, in the first range the band near 6915 cm(-1) shows a slight increase and in the second range it has a linear intensity change with a slope of 0.002 a.u./degree C. In the third range, a rapid increase of the peak intensity is observed. This band exists even at 15 degrees C (just below the melting point) and shows a shift from 6910 to 6915 cm(-1) and a band narrowing from 85 to 80 cm(-1) (full width at half-height) over a temperature range of 16 to 79 degrees C. Furthermore, it has been found that there are two broad bands at around 6835 and 6778.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号