首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Protein and lipid changes and their effects on the sensory properties (taste–odour) of Turkish white cheese were studied. Mean values for the chemical properties of white cheese were: total solids (TS) 44.39 g/100 g; titratable acidity 2.15% (as lactic acid); pH value 4.50; fat-in-dry matter 47.80 g/100 g; salt-in-dry matter 8.65 g/100 g; total nitrogen (TN) 2.50 g/100 g; water-soluble nitrogen (WSN) 0.48 g/100 g; ripening index (RI) 18.98%; tyrosine 65.00 mg/100 g; acid degree value (ADV) 385.96 mg KOH/100 g fat; volatile fatty acids (VFA) 15.54 mL 0.1 N NaOH/100 g and total free fatty acids (TFFA) 1325.96 mg/100 g cheese. Sensory scores for taste and odour were 23.67 (out of 35) and 8.28 (out of 10), respectively. The chemical qualities of the cheeses, including acidity, dry matter, fat-in-dry matter and VFA had an effect on flavour ( P  < 0.05).  相似文献   

2.
Ras cheese was manufactured with cell free extract, freeze- and heat-shocked cultures of Leuconostoc spp. to enhance flavour development and accelerated ripening. Cheese analysis (pH, acidity, dry matter, fat, protein, soluble nitrogen, volatile acidity, free fatty acids) were carried out for 3 months. No significant differents were observed between the experiment cheeses and control, however, the cheese flavour was enhanced in cheeses with addition of heat treated Leuconostoc cells. Bitter taste was decreased in all experimental cheeses.  相似文献   

3.
Lighvan cheese was studied to determine the physicochemical and biochemical changes over 90 days of ripening in brine. Acidity, pH, dry matter, fat values, lipolysis level, water‐soluble nitrogen (WSN), total nitrogen (TN), ripening index (RI), trichloroacetic acid‐soluble nitrogen (TCA‐SN) and organoleptic assessments were analysed. Dry matter and fat values decreased during ripening. Lipolysis level, RI, TCA‐SN values and salt content increased continuously until the end of the ripening period, but total nitrogen decreased throughout a 90‐day storage period. The ripening stage was the main factor affecting the cheese’s sensory properties.  相似文献   

4.
The effect of addition of pregastric lipase enzyme on the accelerated ripening of white pickled cheese was investigated. Commercial pregastric lipase was added to milk before rennet addition at a level of 0,5, 8, 11 g per 100 L of milk and cheeses were made from this milk. Total solids, fat, total nitrogen, salt, titratable acidity, pH and free fatty acids (C2-C18:1) were analysed in the samples during 1–90 days of ripening period at 15 days intervals. Total solids, fat, total nitrogen, salt, titratable acidity, and pH of cheeses slightly increased during the ripening period. Free fatty acids and volatile free fatty acid contents in cheeses made from pregastric lipase added milk were affected by pregastric lipase and their contents were increased significantly (P<0.01) during the ripening period. Particularly, when cheese had a high level (11 g per 100 L milk) pregastric lipase, the amounts of butyric, caproic and caprylic acids in white pickled cheese were quite high. The relative amounts of volatile free fatty acids varied with storage time and pregastric lipase levels.  相似文献   

5.
Thirteen Ras cheese were made from 4% fat raw milk; 3% raw and heat treated; 2% raw and heat treated milks in order to study the effect of freeze-shocked or heat-shocked L. casei NIH 334 or L. helveticus CNRZ 53 on the quality of the resultant cheeses. The soluble nitrogen, soluble tyrosine, soluble tryptophan, total volatile fatty acids, titratable acidity and organoleptic evaluation scores increased as ripening period progressed, while moisture decreased. Neither strain nor the heated lactobacilli had significant effects on moisture content of cheeses, while increasing their acidity. Cheeses with freeze-shocked L. casei or L. helveticus had higher titratable acidity than cheeses in which heat-shocked cells were added. However, cheeses added L. helveticus had higher acidity than those with L. casei. Ripening indices (soluble nitrogen, soluble tyrosine, soluble tryptophan and total volatile fatty acids) and organoleptic evaluation scores had similar trends. Cheeses with attenuated lactobacilli had higher ripening indices and cheese scores than cheeses without lactobacilli. Addition of either freeze-shocked L. casei or L. helveticus yielded cheeses having higher ripening indices and organoleptic scores than cheeses made with heat-shocked lactobacilli. The best cheeses were made from 3% fat milk heated to 70 °C, and containing freeze-shocked L. helveticus followed by cheeses made from 2% fat milk heated to 75 °C and containing freeze-shocked L. helveticus.  相似文献   

6.
The aim of this study was to determine and compare the microbiological, biochemical and sensory characteristics of herby cheese made with two different methods. In the first method (M1), milk and herbs were pasteurized at 65°C for 30 min, and Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris were added as starter culture at an inoculum ratio of 1.5%. In the second method (M2), the conventional cheesemaking was applied. Microbiological and biochemical changes were monitored throughout the ripening period of 90 days. Samples were taken from cheeses on days 1, 15, 30, 60, and 90. At the end of ripening, sensory characteristics of cheeses manufactured with both methods were evaluated. The obtained results suggested that most changes in pH, titratable acidity, and dry matter contents of cheese varieties were not found to differ statistically significant, but the difference in salt content was significant (P < 0.01). Total aerobic count, lactic acid bacteria, Staphylococcus aureus, coliforms, moulds, yeasts, proteolytic and lipolytic microorganism counts were lower in M1 cheese samples than those of M2 cheese samples (P < 0.01). The numbers of psychrotrophic microorganism in both cheese types were not found to differ significantly. Moreover, the results suggested that there were significant differences (P < 0.01) in the degrees of proteolysis and lipolysis of the cheese varieties. High proteolysis and lipolysis rates were monitored in the traditional cheese samples. However, there were no significant differences between the sensory characteristics of cheese samples.  相似文献   

7.
THE CONTRIBUTION OF HERBS TO THE ACCUMULATION OF HISTAMINE IN "OTLU" CHEESE   总被引:1,自引:0,他引:1  
The aim of this study was to determine the effect of herbs and the use of raw milk on histamine accumulation in “Otlu” (Herby) cheese during ripening. Cow's milk was used for the cheese production. The milk was divided into two main groups: one was used raw and the other was pasteurized at 65C for 30 min. Each group was further divided into two subparts, one of which was used as control (without herbs), while 2% (w/v) of the herbs were added into the other to produce Herby cheese. All cheeses were ripened at 7C for 90 days. The cheese samples were analyzed in terms of histamine content, titratable acidity, dry matter, salt and degree of ripening on days 5, 30, 60 and 90. Total mesophilic aerobic bacteria (MAB) were also counted during ripening. The use of raw milk and the addition of herb both increased histamine formation in Otlu cheeses (P < 0.05). Moreover, higher water‐soluble nitrogen values, as degree of ripening, were obtained from both raw milk and herb‐added cheeses. The number of MAB was higher in raw cheeses (P < 0.05) and also herb‐added cheeses. The study suggests that the addition of herbs may facilitate histamine formation in Herby cheese.  相似文献   

8.
Freeze-shocked cultures of Lactobacillus helveticus or Lactobacillus casei were added at levels of 1% and 2% to Ras cheese milk prior to renneting as an adjunct starter to enhance flavour development of cheese. These additives did not affect the gross chemical composition of the cheeses but increased the formation of soluble nitrogenous compounds, free volatile fatty acids, the flavour intensity and improved the body characteristic. Also, the counts of bacterial groups (total, proteolytic and lipolytic) of the cheese treated with freeze-shocked lactobacilli were higher than in the control. Moreover, the ripening period was reduced to be 2 months compared with 4 months required for the control cheese. Also, using freeze-shocked culture of L. helveticus was the most effective in this respect.  相似文献   

9.
Two proteinases, a neutral proteinase from Bacillus subtilis and a cysteine proteinase from Micrococcus sp., were used to accelerate the ripening process of raw cow's milk Hispánico cheese, a semihard variety. Two levels (0.1% and 1%) of a commercial starter culture containing Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris were added for cheese manufacture. The influence of both factors, proteinase addition and level of starter culture, on the growth of amino acid-decarboxylating microorganisms and on the formation of biogenic amines during cheese ripening was investigated in duplicate experiments. The population of tyrosine decarboxylase-positive bacteria, which represented less than 1% of the total bacterial population in most cheese samples, and tyrosine decarboxylase-positive lactobacilli was not influenced by proteinase addition or level of starter culture. Tyramine was detected in all batches of cheese from day 30. Its concentration was significantly (P < 0.05) influenced by proteinase addition but not by the level of starter culture and increased with cheese age. After 90 days of ripening, 103 to 191 mg/kg of tyramine was found in the different cheese batches. Histamine was not detected until day 60 in cheese with neutral proteinase and 1% starter culture and until day 90 in the rest of the cheeses. The concentration of this amine did not exceed 20 mg/kg in any of the batches investigated. Phenylethylamine and tryptamine were not found in any of the samples.  相似文献   

10.
Lactococcus lactis ssp. lactis IPLA 947, L. lactis ssp. lactis biovar. diacetylactis IPLA 838 and Leuconostoc citreum IPLA 616 and designed for Afuega'l Pitu cheese manufacture from pasteurized milk was assayed in cow's and ewe's milk, and in mixtures containing 10% and 20% ewe's milk in cow's milk. The evolution of microbial counts, pH, titratable acidity, organic acids and volatile compounds production throughout the incubation period was determined. The use of ewe's milk as a culture medium increased the metabolic activity of the starter culture reflected in a higher lactose consumption, significantly higher acidity and some carbon source-derived organic acids and volatile compounds production, as well as in slightly higher starter strains growth, although the latter was not statistically significant. Thus, it is suggested that ewe's milk or mixtures of ewe's with cow's milk can be satisfactorily used in the manufacture of this traditional cheese. Received: 27 August 1999  相似文献   

11.
Kashar cheeses were manufactured using different coagulants (calf rennet, chymosin derived by fermentation and proteases from Rhizomucor miehei and Cryphonectria parasitica) and ripened for 90 days. Use of different coagulants did not influence the dry matter, fat, protein, salt, pH, titratable acidity, total free fatty acids and texture profile analyses. The levels of water‐soluble nitrogen, 12% trichloroacetic acid‐soluble nitrogen, and for 5% phosphotungstic acid‐soluble nitrogen, the sensory properties were significantly influenced by the use of different coagulants. β‐casein was more hydrolysed in the cheese manufactured using protease from Cryphonectria parasitica than the other cheeses during 90 d of ripening.  相似文献   

12.
The chemical, physicochemical, proteolysis, sensory, and texture characteristics of white cheeses made from interesterified fat were examined throughout ripening for 90 days. The water-soluble nitrogen based ripening indexes of cheeses increased throughout the ripening period. However, there were not large quantitative differences between the peptide profiles of the all cheese samples. Cheeses produced by using fully interesterified fat had higher values for hardness, chewiness, and gumminess than that of control cheese (p<0.05). The polyunsaturated to saturated fatty acid ratios of cheeses were increased due to the presence of interesterified fat. The cholesterol values of cheeses decreased at the rate of between 58.83–89.04% depending on interesterified fat addition. In the sensory analysis, similar scores were obtained for both the control cheese and the other cheeses. The results showed that interesterified fat in cheese production could be used to fully or partially replace the milk fat in cheese.  相似文献   

13.
The development of free fatty acids (FFA) and volatile flavour compounds in the Turkish white‐brined cheese Beyaz peynir made by using three wild strains of Lactococcus lactis subsp. lactis was investigated over 90 days. Results showed that production of both FFA and flavour compounds in the control (PK1) and experimental cheeses (MBLL9, MBLL23 and MBL27) was strain dependent. The hydrolysis of milk fat was more evident in the cheese made using Lc. lactis subsp. lactis MBL27. Considering the production of fat breakdown compounds and acidification activities of the strains MBLL23 and MBL27, the combination of these strains could be proposed for the production of white‐brined cheese.  相似文献   

14.
Studies were made on the manufacture and ripening of cheddar cheese prepared with a milk-clotting enzyme of R. oligosporus and compared with rennet cheese. The curd working properties, yields and quality of green cheese from R. oligosporus enzyme were fairly comparable with calf-rennet. During the ripening period the changes in moisture, acidity, pH and fat content of both the cheese were similar. The soluble nitrogen was comparatively low while maturity index was higher during ripening in R. oligosporus cheese than calf-rennet cheese. Organoleptically, R. oligosporus cheese was rated lower than calf-rennet cheese, developing transient bitterness during ripening like other fungal rennet substitutes.  相似文献   

15.
16.
Trials were carried out to produce Ras cheese of good quality without the use of starter. Cheese was made from pasteurized cow's milk acidified with lactic acid or citric acid to pH 5.8 alone or coupled with mixing the curd with glucono δ lactone (4.5 g/kg curd). Control cheese was made from milk ripened with a starter culture of S. lactis. Resultant cheeses showed poor body and texture, weak flavour intensity and low levels of soluble nitrogen compounds and free volatile fatty acids. Incorporation into the cheese curd of mixtures containing Fromase 100 (fungal protease) and Piccantase B (fungal lipase) or Fromase 100 and Capalase K (animal lipase) enhanced flavour intensity, improved body characteristics and accelerated the formation of both soluble nitrogen compounds and free volatile fatty acids. The organoleptic properties of the experimental cheeses with added enzymes were comparable to those of the control cheese.  相似文献   

17.
《Food chemistry》1986,21(4):301-313
An attempt has been made to shorten the ripening period of Ras cheese. Cheese was made from curd incorporated with a heat-shocked culture of either Lactobacillus casei or Lactobacillus helveticus at levels of 1% and 2% each. These treatments did not considerably affect the gross chemical composition of the cheese but influenced flavour intensity, body characteristics, the formation of soluble nitrogen compounds and free volatile fatty acids. Meanwhile, total proteolytic and lipolytic bacterial counts were also stimulated. Cheese with added heat-shocked lactobacilli showed desirable flavour and consistency 1–2 months earlier than control cheese made without additives.  相似文献   

18.
Bouhezza is an Algerian cheese, which is ripened in a goat-skin bag, called Chekoua. The aim of the study was to determine the protein profiles and aromatics, which contribute to sensory properties of Bouhezza cheese. The chemical composition, proteolysis, and volatile profile have been carried out in cheese made from raw goat milk. The results showed that, the dry matter ranged from 23.07 to 51.95%, the fat-in-dry matter ranged from 10.58 to 31.77%, and the protein ranged from 28.27 to 42.09%. Water-soluble and 12% trichloroacetic acid-soluble nitrogen fractions decreased at the beginning of the ripening process and then they increased until the end of ripening. The reverse phase-high-performance liquid chromatography peptide profiles of the cheese showed the modifications occurred during the ripening process. The volatile compounds showed a diversity of odorous components which contribute to give to the cheese its particular organoleptic. There were 109 compounds identified in Bouhezza cheese. Carboxylic acids, esters, and alcohols were the main classes of the volatile components in the cheese.  相似文献   

19.
Cell viability, autolysis and lipolysis were studied in Cheddar cheese made using Lactococcus lactis subsp. cremoris AM2 or Lactococcus lactis subsp. cremoris HP. Cheddar cheese was made in triplicate over a 3 month period and ripened for 238 days at 8 degrees C. Cell viability in cheese was lower for AM2 (a non-bitter strain) than for strain HP (a bitter strain). Autolysis, monitored by the level of the intracellular marker enzyme, lactate dehydrogenase (EC 1.1.1.27) in cheese 'juice' extracted by hydraulic pressure, was much greater in the cheese made using AM2 than that made with HP. Lipolysis was determined by the increase during ripening of individual free fatty acids (FFA) from butyric (C4:0) to linolenic acid (C18:3) measured using a high performance liquid chromatographic technique. Levels of individual FFA from butyric (C4:0) to linolenic (C18:3) acids increased significantly (P<0.05) during ripening in cheeses made with either starter culture. Palmitic (C16:0) and oleic (C18:1) acids were the most abundant FFA throughout ripening in all cheeses. Levels of caprylic (C8:0), myristic (C14:0), palmitic (C16:0) and stearic (C18:0) acids were significantly higher (P<0.05) in cheeses manufactured with Lc. lactis subsp. cremoris AM2 than in cheeses manufactured with Lc. lactis subsp. cremoris HP. Differences in levels of lipolysis between strains was not due to differences in the specific lipolytic or esterolytic activities in cell free extracts of the strains as measured by activity on triolein (lipase) and p-nitrophenylbutyrate (esterase) substrates. Therefore, evidence is provided for a relationship between the extent of starter cell autolysis and the level of lipolysis during Cheddar cheese ripening.  相似文献   

20.
The effects of the adjunct cultures Lactococcus lactis ssp. diacetylactis, Brevibacterium linens BL2, Lactobacillus helveticus LH212, and Lactobacillus reuteri ATCC 23272 on volatile free fatty acid production in reduced-fat Edam cheese were studied. Lipase activity evaluation using p-nitrophenyl fatty acid ester substrates indicated that L. lactis ssp. diacetylactis showed the highest activity among the 4 adjunct cultures. Full-fat and 33% reduced-fat control cheeses (no adjunct) were made along with 5 treatments of reduced-fat cheeses, which included individual, and a mixture of the adjunct cultures. Volatile free fatty acids of cheeses were analyzed using static headspace analysis with 4-bromofluorobenzene as an internal standard. Changes in volatile free fatty acid concentrations were found in headspace gas of cheeses after 3-and 6-mo ripening. Acetic acid was the most abundant acid detected throughout ripening. Full-fat cheese had the highest relative amount of propionic acid among the cheeses. Certain adjunct cultures had a definite role in lipolysis at particular times. Reduced-fat cheese with L. lactis ssp. diacetylactis at 3-mo showed the highest levels of butyric, isovaleric, n-valeric, iso-caproic, and n-caproic acid. Reduced-fat cheese with Lactobacillus reuteri at 6 mo produced the highest relative concentration of isocaproic, n-caproic, and heptanoic, and the highest relative concentration of total acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号