首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reliability of steel welds becomes more critical issue with increasing steel strength,because brittle phases are more likely to form in the weld metals and heat-affected zone(HAZ) and thereby the toughness and ductility of the welds are degraded.Therefore,refinement of microstructure and minimization of the brittle phases are necessary to improve the reliability of the high-strength steel welds.In this presentation,microstructure formation that controls the toughness of weld metals and HAZ in high-strength low-alloy(HSLA) steel welds is reviewed and possible routes to the improvement of the weld microstructure and weld toughness are discussed.  相似文献   

2.
3.
对钢结构而言,诸如海洋平台、船舶、桥梁、建筑和油气管线等,焊接后的性能直接决定了其服役寿命和安全性,重要性不言而喻.在针对焊接相关问题的研究中,焊接热影响区的韧性提升一直是重点和难点.焊接热影响区会经历高达1400℃的高温,从而形成粗大的奥氏体晶粒,如果焊接参数控制不当,不能通过后续冷却过程中的相变细化组织,就会造成韧性的降低.而多道次焊接的情况更为复杂,前一道次形成的粗晶区还会在后续焊接过程中经历二次热循环,从而形成链状M-A,造成韧性的急剧下降.本文旨在对一些现有焊接热影响区的相关研究结果进行总结,探讨母材的成分、第二相及焊接工艺等因素对热影响区微观组织和性能的影响,为低温环境服役的大型钢结构的焊接性能改善提供一些设计思路.  相似文献   

4.
Fracture toughness and ductile-brittle transition behavior were measured for a copper-bearing HSLA steel. The value ofK lc for cleavage failure was independent of heat treatment, whileJ lc for ductile failure decreased monotonically with increasing strength level. With both failure modes, fracture appears to be controlled by cracking of sulfide inclusions. The decrease in ductile-failureJ lc is caused by decreased work-hardening rates that suppress cleavage and facilitate void coalescence. Both higher austenitizing temperature and quenching rate after austenitization influence the ductile/brittle transition temperature, either through grain-size and precipitate refinement or through an increase in the resistance of the steel to shear failure. Formerly Graduate Student, The Ohio State University  相似文献   

5.
6.
The local microstructure in the heat-affected zone 1 (HAZ1) of a laser beam-welded Al-Mg-Si-Cu aluminum alloy is investigated closely. Dispersoid-free zones (DFZs), where the dispersoids of the base material (BM) are dissolved, are found in the vicinity of the fusion line (FL). They are not uniformly surrounding a grain, but oriented toward the FL. Their width can be as large as 10 μm. Detailed analysis has revealed a decreased silicon concentration as well as a decreased hardness of the oriented dispersoid-free zones (ODFZs). Two mechanisms for the formation of this welding metallurgical feature are discussed.  相似文献   

7.
The present study investigates the influence of local brittle zones (LBZs) on the fracture resistance of the heat-affected zones (HAZs) in quenched, lamellarized, and tempered (QLT) 9 pct Ni steel weld joints. The results of Charpy impact tests using simulated coarse-grained, heat-affected zone (CGHAZ) specimens show that the intercritically reheated (IC) CGHAZ and unaltered (UA) CGHAZ are the primary and secondary LBZs, respectively, of the steel at cryogenic temperature. Compact crack arrest (CCA) tests and crack-tip opening displacement (CTOD) tests were conducted at a liquefied natural gas (LNG) temperature to measure the variations in crack-arrest toughness and crack-initiation toughness along the distance from the fusion line (FL) within the actual HAZ. While CTOD tests show a decrease in toughness when approaching the FL, i.e., the regions containing LBZs, the crack-arrest-toughness values are found to be higher than those in the regions near the base materials. This is due to the fact that the crack-arrest toughness is governed by the fraction of microstructures surrounding LBZs instead of the LBZs themselves. By direct comparison of the brittle-crack-arrest toughness (K a ) with the brittle-crack-initiation toughness (K c ), this investigation has determined that, with regard to crack-arrest behavior, the LBZs of QLT-9 pct Ni steel do not limit the practical safety performance of the weld joints in LNG storage tanks.  相似文献   

8.
The microstructure of a broad range of low-carbon low-alloy high-strength pipe steels produced by thermomechanical treatment is studied by transmission electron microscopy. Such steels consist of a mixture of various types of ferrite matrix with high-carbon phases and structural components. The classification of the structures is refined, with separate consideration of the components forming the low-carbon ferrite matrix and the high-carbon components that appear as isolated regions and also as layers and inclusions in bainitic ferrite. A deformational dilatometer is used to determine the temperatures ranges in which the various phases and structural components are formed.  相似文献   

9.
采用高温激光共聚焦显微镜原位观察和电子背散射衍射技术研究TiN粒子在低合金高强度钢模拟大线能量焊接热循环过程中晶粒细化效果.研究发现合理的Ti和N含量能形成大量细小弥散分布的纳米级TiN粒子,在焊接热循环过程中有效钉扎热影响区粗晶区奥氏体晶界,抑制晶粒粗化.同时,TiN附着在Al2O3表面析出,在冷却过程中有效促进针状铁素体形核,得到有效晶粒尺寸非常细小的由少量针状铁素体和大量贝氏体构成的复合组织.  相似文献   

10.
借助热力学软件Thermo-Calc和ASPEX自动扫描电镜等分析手段,研究了低合金高强钢精炼过程渣-钢反应和钙处理对夹杂物改性行为的影响.通过提高炉渣碱度和w(CaO)/w(Al2O3)值以及降低炉渣氧化性等措施,钙处理前钢中Al2O3夹杂物转变为靠近1600℃液相区的CaO-MgO-Al2O3复合夹杂物和少量的MgO·Al2O3尖晶石.在渣-钢反应对Al2O3部分变性的基础上,钙线喂入量每炉由优化前的800 m减少到300 m仍能达到夹杂物改性的目的.  相似文献   

11.
In this study, microstructures of a heat-affected zone (HAZ) of an SA 508 steel were identified by Mossbauer spectroscopy in conjunction with microscopic observations, and were correlated with fracture toughness. Specimens with the peak temperature raised to 1350 °C showed mostly martensite. With the peak temperature raised to 900 °C, the martensite fraction was reduced, while bainite or martensite islands were formed because of the slow cooling from the lower austenite region and the increase in the prior austenite grain size. As the martensite fraction present inside the HAZ increased, hardness and strength tended to increase, whereas fracture toughness decreased. The microstructures were not changed much from the base metal because of the minor tempering effect when it was raised to 650 °C or 700 °C. However, fracture toughness of the subcritical HAZ with the peak temperature raised to 650 °C to 700 °C was seriously reduced after postweld heat treatment (PWHT) because carbide particles were of primary importance in initiating voids. Thus, the most important microstructural factors affecting fracture toughness were the martensite fraction before PWHT and the carbide fraction after PWHT.  相似文献   

12.
Thermally stable TiN particles can effectively pin austenite grain boundaries in weld heat-affected zones (HAZs), thereby improving toughness, but can also act as cleavage initiators. The HAZs simulated in a GLEEBLE 1500 TCS using two peak temperatures (T p ) and three cooling times (Δ 8/5) have determined the effects of matrix microstructure and TiN particle distribution on the fracture toughness (crack tip opening displacement (CTOD)) of three steels microalloyed with 0.006, 0.045, and 0.1 wt pct Ti. Coarse TiN (0.5 to 6 μm) particles are identified in steels with the two higher levels of Ti, and fine Ti(C, N) (35 to 500 nm) particles were present in all three steels. Large prior austenite grain size caused by higher T p decreased fracture toughness considerably in steels containing coarse TiN particles but had little effect in their absence. Fracture toughness was largely independent of matrix microstructure in the presence of coarse particles. Cleavage fracture initiation was observed to occur at coarse TiN particles in the samples with a large prior austenite grain size. Alloy thermodynamics have been used to rationalize the influence of Ti content on TiN formation and its size.  相似文献   

13.
14.
The effect of Zr addition on the microstructure and impact toughness in the coarse-grained heat-affected zone (CGHAZ) of high-strength low-alloy steels subjected to 100?kJ?cm-1 heat input was investigated. The second- phase particles were mainly Al–Ti complex oxides and (Ti,Nb)N precipitates in Zr-free steel, whereas lots of finer Zr–Al–Ti complex oxides and (Al,Ti,Nb)N precipitates were formed in Zr-bearing steel because of Zr addition. These finer oxides and precipitates effectively restricted the austenite grain growth by pinning effect during welding thermal cycle, and smaller and more uniform prior austenite grains were obtained in CGHAZ of Zr-bearing steel. Furthermore, more acicular ferrite grains nucleated on Zr–Al–Ti complex oxides, inducing formation of fine-grained microstructure in CGHAZ of Zr-bearing steel. The toughness improvement in CGHAZ of Zr-bearing steel with dimple fracture surface was attributed to the grain refinement by pinning effect and acicular ferrite formation.  相似文献   

15.
This study is concerned with the effects of alloying elements on fracture toughness in the transition temperature region of base metals and heat-affected zones (HAZs) of Mn-Mo-Ni low-alloy steels. Three kinds of steels whose compositions were varied from the composition specification of SA 508 steel (grade 3) were fabricated by vacuum-induction melting and heat treatment, and their fracture toughness was examined using an ASTM E1921 standard test method. In the steels that have decreased C and increased Mo and Ni content, the number of fine M2C carbides was greatly increased and the number of coarse M3C carbides was decreased, thereby leading to the simultaneous improvement of tensile properties and fracture toughness. Brittle martensite-austenite (M-A) constituents were also formed in these steels during cooling, but did not deteriorate fracture toughness because they were decomposed to ferrite and fine carbides after tempering. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment. These findings indicated that the reduction in C content to inhibit the formation of coarse cementite and to improve toughness and the increase in Mo and Ni to prevent the reduction in hardenability and to precipitate fine M2C carbides were useful ways to improve simultaneously the tensile and fracture properties of the HAZs as well as the base metals.  相似文献   

16.
Due to the influence of the welding thermal cycle, the toughness of structural steel generally degenerates. Recently, the intercritically reheated coarse-grained heat-affected zone (IC CG HAZ) was found to demonstrate the worst toughness in welded joint, which was associated with its fracture mechanism. In this article, two IC CG HAZs of a structural steel were prepared by welding thermal-cycle simulation techniques. For the two IC CG HAZs, the static and dynamic fracture toughness were evaluated; the fracture mechanism was also studied. Under both static and dynamic loading, cracks in the IC CG HAZ were found to initiate at the intersection of bainitic ferrite α B /0 packets with different orientations, followed by propagation in cleavage. In some crack propagation regions, adjacent cleavage facets are connected by shear, thus producing dimple zones. Though the brittle fracture initiation mechanism remains unchanged, the cleavage facet size, the proportion of the dimple zones between facets, and the distance from the cracking initiation site to the crack tip vary with loading speed and welding conditions. These changes were found to be related to the variations caused by strain rate and welding conditions in fracture toughness for the IC CG HAZs.  相似文献   

17.
采用多元合金化思路设计了一种新型低合金高强度高韧性锰钢.研究了该钢的静态CCT曲线、显微组织、断口形貌以及热处理工艺对钢的力学性能的影响.结果表明:该钢中过冷奥氏体的稳定性高,具有高淬透性及高回火稳定性,经890~930℃淬火及200~230℃回火后获得回火板条马氏体组织,使该钢具有高的强韧性(抗拉强度Rm≥1500MPa,冲击韧性Akv≥85J)匹配;钢中适当提高锰含量,符合我国资源情况,具有较高的性价比.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号