首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to improve the non-uniform corrosion of Al–0.5Zn–0.03In–1Mg–0.05Ti alloys, Al–5Zn–0.03In–1Mg–0.05Ti–xLa (x = 0.3, 0.5 and 0.7 wt.%) alloys were developed. Microstructures and electrochemical properties of the alloys were investigated. The results show that the optimal microstructures and electrochemical properties are obtained in Al–5Zn–0.03In–1Mg–0.05Ti–0.5La alloy. The main precipitate phase is Al2LaZn2 particles. The excellent electrochemical properties of Al–5Zn–0.03In–1Mg–0.05Ti–0.5La alloy is mainly attributed to fine grains and grain boundaries containing fine Al2LaZn2 precipitates. At the same time the fine grains can improve the non-uniform corrosion of Al–0.5Zn–0.03In–1Mg–0.05Ti alloy.  相似文献   

2.
Compositionally modulated multilayer coatings consisting alternative layers of nickel and zinc–iron alloy were electroplated using dual bath technique. The coating's surface morphology was studied using a scanning electron microscope. The effects of coatings configuration, i.e., order and the number of layers on the coatings surface roughness was investigated. It was observed that as the number of layers increases in the different Ni/Zn–Fe CMM coatings, 2 and 4-layer Zn–Fe/Ni CMM coatings the final surface roughness is decreased due to the lower grain growth of zinc–iron individual layers. The coatings corrosion protection performance was evaluated using Tafel extrapolation, anodic polarization and salt spray tests. The results of corrosion study showed that all Ni/Zn–Fe and Zn–Fe/Ni CMM coatings, except the 8-layer Zn–Fe/Ni coating, had a better corrosion protection performance compared to the single layer zinc–iron alloy coating or nickel coating.  相似文献   

3.
Conventional hot-dip galvanised zinc coated (Z) and novel hot-dip galvanised Zn–Al–Mg alloy coated (ZM) steel sheet samples with a coating thickness of 7 μm each were exposed to standardised salt spray test and cross-sections of the corrosion samples were analysed by using SEM and EDS. On Z corrosion proceeds very fast and the steel substrate is attacked even after 100 h of exposure. ZM samples showed a different behaviour. The entire metallic ZM coating is converted into a stable, adherent aluminium-rich oxide layer, which protects the steel substrate against corrosive attacks. This layer is the main reason for the enhanced corrosion resistance of the ZM coating in sodium chloride-containing environment.  相似文献   

4.
Zn–Ni–CNT composite coatings were prepared by electrodeposition from a sulphate bath. The effect of CNTs on the corrosion behavior, wear resistance and hardness of the composite coatings was investigated. Their corrosion properties were evaluated by polarization, impedance, weight loss and salt spray tests. The CNT particles inclusion improved the corrosion resistance, hardness and wear resistance of the coating. The grain size of the composite coating was smaller than that of a pure Zn–Ni coating with the same Zn/Ni ratio. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature.  相似文献   

5.
The formation and the growth of the intermetallic compounds (IMCs) at the interface between the Sn–8Zn–3Bi–xAg (x = 0, 0.5, and 1 wt.%) lead-free solder alloys and Cu substrate soldered at 250 °C for different durations from 5 to 60 min were investigated. It was found that Cu5Zn8 and CuZn5 formed at Sn–8Zn–3Bi/Cu interface, and Cu5Zn8 and AgZn3 formed at the solder/Cu interface when the solder was added with Ag. The thickness of IMC layers in different solder/Cu systems increased with increasing the soldering time. And the growth of the IMCs was found to be mainly controlled by a diffusion mechanism. Additionally, the growth of the IMC layers decreased with increasing content of Ag in the soldering process.  相似文献   

6.
Phase equilibria of the Cd–Sb–Zn system have been investigated by metallographic examinations, DSC, XRD and WDS measurements. At 250 °C, the ternary diagram shows two three-phase fields, (Zn)+(Cd)+Zn4Sb3 and (Cd)+ Zn4Sb3+(Zn,Cd)Sb. Continuous solid solution has been found between ZnSb and CdSb. Solubility of Cd in Sb3Zn4 was determined to be about 43 at.%. A variant of the reaction scheme is proposed for the Cd–Sb–Zn system to understand phase relations observed at 250 °C.  相似文献   

7.
Phase equilibria in the Co-rich Co–Al–W ternary system were determined with a unique diffusion-couple technique in which Co–27Al and Co–15W binary alloys (at. %) were first coupled for interdiffusion and then heat-treated for precipitation. After a diffusion process at 1300 °C for 20 h, concentration gradients of Al and W were formed in the γ-Co(A1) matrix in the vicinity of the coupled interface. After a heat treatment at 900 °C for 500 h the γ′-Co3(Al,W)(L12) phase was formed with a coarsened shape in contact with the γ, CoAl(B2) and Co3W(D019) phases. Additionally, it appeared with a submicron cuboidal shape within the γ matrix. After 2000 h, however, the coarsened γ′ phase became infrequent and the three phases of γ, CoAl and Co3W came into frequent contact with each other. These results clearly demonstrate that the γ′ phase is metastable and the three phases of γ, CoAl and Co3W are thermodynamically in equilibrium at 900 °C in the Co–Al–W ternary system.  相似文献   

8.
The phase relations in the ternary system Yb–Zn–In have been established for the partial isothermal section in the 0–33.3 at.% ytterbium concentration range at 400 °C, by researching of more than forty alloys. X-ray powder diffraction (XRPD), optical microscopy (OM) and scanning electron microscopy (SEM), complemented with energy dispersive X-ray spectroscopy (EDS), were used to study the microstructures, identify the phases and characterize their crystal structures and compositions. The phase equilibria of this Yb–Zn–In partial section at 400 °C are characterized by the presence of three extended homogeneity ranges, indium solubility in Yb13Zn58 and YbZn2 and of zinc solubility in YbIn2, and the existence of one ternary intermetallic compound, YbZn1−xIn1+x, x = 0.3. This new compound crystallizes in the UHg2 structure type (space group P6/mmm), with a = 4.7933(5) Å, c = 3.6954(5) Å. The studied partial isothermal section has eight ternary phase fields at 400 °C.  相似文献   

9.
Ni–Co nanocystalline coatings were electrodeposited from a modified Watts bath. Increasing the deposition current density had no significant effect on structure, corrosion and tribocorrosion behavior of the coatings. Adding saccharin into the bath reduced the grain size, increased the hardness, changed the texture component from (2 0 0) to (1 1 1), smoothed the surface morphology, increased the corrosion resistance and improved the tribocorrosion behavior of coating. Presence of sodium lauryl sulfate in the bath increased the corrosion resistance of coating by producing a more compact surface morphology. However, the coating showed low tribocorrosion resistance, probably due to its lower hardness.  相似文献   

10.
The microstructures and mechanical properties of cast Mg–Zn–Al–RE alloys with 4 wt.% RE and variable Zn and Al contents were investigated. The results show that the alloys mainly consist of α-Mg, Al2REZn2, Al4RE and τ-Mg32(Al,Zn)49 phases, and a little amount of the β-Mg17Al12 phase will also be formed with certain Zn and Al contents. When increasing the Zn or Al content, the distribution of the Al2REZn2 and Al4RE phases will be changed from cluster to dispersed, and the content of τ-Mg32(Al,Zn)49 phase increased gradually. The distribution of the Al2REZn2 and Al4RE phases, and the content of β- or τ-phase are critical to the mechanical properties of Mg–Zn–Al–RE alloys. The Mg–6Zn–5Al–4RE alloy with cluster Al2REZn2 phase and low content of β-phase, exhibits the optimal mechanical properties, and the ultimate tensile strength, yield strength and elongation are 242 MPa, 140 MPa and 6.4% at room temperature, respectively.  相似文献   

11.
The present work investigates the hot corrosion resistance of detonation gun sprayed (D-gun) Cr3C2–NiCr coatings on Superni 75, Superni 718 and Superfer 800 H superalloys. The deposited coatings on these superalloy substrates exhibit nearly uniform, adherent and dense microstructure with porosity less than 0.8%. Thermogravimetry technique is used to study the high temperature hot corrosion behavior of bare and Cr3C2–NiCr coated superalloys in molten salt environment (Na2SO4–60% V2O5) at high temperature 900 °C for 100 cycles. The corrosion products of the detonation gun sprayed Cr3C2–NiCr coatings on superalloys are analyzed by using XRD, SEM, and FE-SEM/EDAX to reveal their microstructural and compositional features for elucidating the corrosion mechanisms. It is shown that the Cr3C2–NiCr coatings on Ni- and Fe-based superalloy substrates are found to be very effective in decreasing the corrosion rate in the given molten salt environment at 900 °C. Particularly, the coating deposited on Superfer 800 H showed a better hot corrosion protection as compared to Superni 75 and Superni 718. The coatings serve as an effective diffusion barrier to preclude the diffusion of oxygen from the environment into the substrate superalloys. It is concluded that the hot corrosion resistance of the D-gun sprayed Cr3C2–NiCr coating is due to the formation of desirable microstructural features such as very low porosity, uniform fine grains, and the flat splat structures in the coating.  相似文献   

12.
Heming Wang  Robert Akid   《Corrosion Science》2007,49(12):4491-4503
The inherent reactivity of the Al–Cu alloys is such that their use for structural, marine, and aerospace components and structures would not be possible without prior application of a corrosion protection system. Historically these corrosion protection systems have been based upon the use of chemicals containing Cr(VI) compounds. Organic–inorganic hybrid silane coatings are of increasing interest in industry due to their potential application for the replacement of current toxic hexavalent chromate based treatments. In the present study, a hybrid epoxy–silica–alumina coating with or without doped cerium nitrate has been prepared using a sol–gel method. The hybrid coatings were applied by a dip-technique to an Al–Cu alloy, Al 2024-T3, and subsequently cured at room temperature. The anticorrosion properties of the coatings within 3.5% NaCl were studied using electrochemical impedance spectroscopy (EIS), and conventional DC polarisation. An exfoliation test method involving immersion in a solution of 4 M NaCl, 0.5 M KNO3 and 0.1 M HNO3 was also used. The cerium nitrate doped sol–gel coating exhibited excellent anticorrosion properties providing an adherent protection film on the Al 2024-T3 substrate. The resistance to corrosion of the sol–gel coating was also evaluated by analysing the morphology of the coating before and after corrosion testing using scanning electron microscopy.  相似文献   

13.
The corrosion behavior of Cu–Al and Cu–Al–Be (0.55–1.0 wt%) shape-memory alloys in 0.5 M H2SO4 solution at 25 °C was studied by means of anodic polarization, cyclic voltammetry, and alternative current impedance measurements. The results of anodic polarization test show that anodic dissolution rates of alloys decreased slightly with increasing the concentrations of aluminum or beryllium. Severe intergranular corrosion of Cu–Al alloy was observed after alternative current impedance measurement performed at the anodic potential of 0.6 V. However, the addition of a small amount of beryllium was effective to prevent the intergranular corrosion. The effect of beryllium addition on the prevention of intergranular corrosion is possibly attributed to the diffusion of beryllium atoms into grain boundaries, which in turn deactivates the grain boundaries.  相似文献   

14.
Zn–Cr alloy coatings were obtained in a flow cell, for modeling the process of high speed electrodeposition on steel strips. Alloy coatings, containing between 6 and 18 at.% Cr were annealed at 260 °C in an inert atmosphere. The phase composition and the crystallographic characteristics of “as prepared” and “annealed” coatings, were studied by XRD. It is shown that non-equilibrium δ- and Γ-(Zn,Cr) phases are major constituents of the “as prepared” coatings. On annealing, equilibrium ζ-CrZn13 phase precipitates from δ- and Γ-supersaturated solid solutions. The lattice parameters and the similarities in phase composition of the annealed coatings, deposited onto two types of substrates – low carbon steel and Cr plated (protected) low carbon steel – show that if Fe from the substrate “contaminates” the precipitated ζ-CrZn13 phases, its relative amount do not exceed few tenths of a percent.The influence of the elemental composition, conditions of electrochemical deposition, and post-deposition thermal treatment on phase composition of the coatings is discussed.  相似文献   

15.
Following up on recent studies of the isothermal section of the Zn–Fe–Ni, Zn–Fe–Bi and Zn–Bi–Ni ternary systems at 450 °C, the Zn-rich corner of the 450 °C isothermal section of the Zn–Bi–Fe–Ni quaternary system with the Zn being fixed at 93 at.% was determined experimentally using the equilibrated alloys approach. The specimens were investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). It was found there exist 4 two-phase regions, 5 three-phase regions and 2 four-phase regions. Two liquid L (Zn) and L (Bi) can coexist with T, ζ and δ-Ni in this isothermal section, no new phase was found in this study.  相似文献   

16.
The ternary InSb–NiSb–Sb system has been studied by X-ray diffraction and by potentiometry. The electromotive forces (EMF) have been measured in the temperature range 640<T/K<860 by using the following galvanic cell:
with x (0.075<x<0.498) and y (0<y<0.359). The investigated samples are located on the following lines of the Gibbs triangle: InSb–Ni0.33Sb0.66, InSb–Ni0.48Sb0.52, InSb–NiSb, Sb–(InSb)0.75(NiSb)0.25, Sb–(InSb)0. 5(NiSb)0.5, Sb–(InSb)0.25(NiSb)0.75. From these measurements, the values of the partial molar thermodynamic functions (Δμ°m,In, ΔH°m,In, ΔS°m,In) (data at reference pressure p0=105 Pa), for the liquid InSb alloy, for the three solid heterogeneous regions InSb–NiSb2–Sb, InSb–NiSbδ?–NiSb2, InSb–NiSbδ, for six ternary liquid–solid alloys, have been calculated.  相似文献   

17.
Electrodeposition of Zn–Ni coatings performed in acidic baths are not suitable for high strength steels due to their high susceptibility to hydrogen embrittlement.In this work, Zn–Ni coatings were deposited on a high strength steel (4340) upon stirring conditions from an alkaline bath. A complete characterisation of the coatings (corrosion, morphology and composition) has been accomplished, correlating the electrodeposition conditions with these features. The best protective properties of the grown coatings were achieved for the alloys with a single phase structure of γ-Ni5Zn21 and a denser morphology. Additionally, the hydrogen content incorporated is lower than even cadmium-coated 4340 steel which has undergone a postbaking dehydrogenation treatment.  相似文献   

18.
The dissolution process of nickel in liquid Pb-free 87.5% Sn–7.5% Bi–3% In–1% Zn–1% Sb and 80% Sn–15% Bi–3% In–1% Zn–1% Sb soldering alloys has been investigated by the rotating disc technique at 250–450 °C. The temperature dependence of the nickel solubility in soldering alloys obeys a relation of the Arrhenius type cs = 4.94 × 102 exp(−39500/RT)% for the former alloy and cs = 4.19 × 102 exp(−40200/RT)% for the latter, where R is in J mol−1 K−1 (8.314 J mol−1 K−1) and T is in K. Whereas the solubility values differ considerably, the dissolution rate constants are rather close for these alloys and fall in the range (1–9) × 10−5 m s−1 at disc rotational speeds of 6.45–82.4 rad s−1. Appropriate diffusion coefficients vary from 0.16 × 10−9 to 2.02 × 10−9 m2 s−1. With both alloys, the Ni3Sn4 intermetallic layer is formed at the interface of nickel and the saturated or undersaturated melt at dipping times of 300–2400 s. The other Ni–Sn intermetallic compounds are found to be missing. A simple mathematical equation is proposed to evaluate the Ni3Sn4 layer thickness in the case of undersaturated melts. The tensile strength of the nickel-to-alloy joints is 94–102 MPa, with the relative elongation being 2.0–2.5%.  相似文献   

19.
Surface treatments and coatings are the practical approaches used to extend the lifetime of components and structures especially when the surface is the most solicited part of the considered engineering component. Hard thermally sprayed coating is one of the most wear resistance coating widely used in many practical mechanical applications. In the construction of articulating parts of medical devices, titanium and its alloys have to be surface coated to improve their tribocorrosion behavior. In this way, the use of porous thermal coatings is known to be a strategy for better binding bone or tissue on femoral stem for example. It is, thus, important to evaluate the corrosion and the wear behaviors of such materials for biosecurity considerations in the human body. In this study, we investigate the behavior of new nano ZrO2 and Al2O3-13 wt.% TiO2 thermal sprayed coatings on commercially pure (cp)-Ti (grade 4) and titanium alloy substrates. Friction and wear tests against Al2O3 balls showed that the wear resistance of Al2O3-13 wt.% TiO2 is better than that ZrO2 coating. Both plasma sprayings have similar abrasive wear behavior; however, the average friction coefficient is higher for alumina–titania coating. Electrochemical tests, open circuit potential monitoring and potentiodynamic polarization, were performed in simulated body conditions (Hank’s solution, 37 °C). Results showed that corrosion resistance was appreciably higher for alumina–titania coating.  相似文献   

20.
Titanium (Ti) was successfully brazed at low temperatures below 800 °C by employing a Zr41.2Ti13.8Ni10.0Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) alloy as a filler. Through the use of this alloy filler, the detrimental segregation of Zr–Cu–Ni filler elements was completely eliminated by heating to well below 800 °C, so the resultant joint was quite homogeneous with a coarse acicular structure. The disappearance of the Zr–Cu–Ni segregated region was rate-controlled by the diffusion of the filler elements in the Ti base metal. Remarkably, the mechanical property and corrosion resistance of the homogeneous joint brazed at 800 °C for 10 min were mostly comparable to those of bulk Ti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号