首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用改造的三维霍普金森试验系统(split Hopkinson pressure bar, SHPB),选取4个轴压水平(25, 50, 75和100 MPa)和4个围压水平(0, 5, 10和15 MPa),对应开展4种应变率(约70, 90, 110和130 s-1)下花岗岩三维动静组合加载试验研究,分析静载轴压、静载围压和应变率对花岗岩受冲击过程中能量耗散的影响规律,并讨论其破坏模式。试验结果表明:轴压增大时,花岗岩破坏时单位体积吸收能逐渐降低;围压或应变率增大时,单位体积吸收能逐渐升高。岩石储能极限在能量耗散过程中发挥关键作用,且不同情况下具体表现不同:储能极限与初始储能的差值影响岩石受冲击时的吸能值;当岩石在静载下进入损伤阶段初期时,储能极限与初始储能的比值决定岩石受冲击时的释能值;当岩石在静载下进入损伤阶段后期甚至发生屈服时,储能极限值正比于岩石释能值。此外,岩石破坏模式与单位体积耗散能关系密切:应变率相似静载组合变化时,破碎程度与单位体积吸收能变化呈负相关;静载组合确定应变率梯度变化时,破碎程度与单位体积吸收能变化呈正相关。  相似文献   

2.
三维动静组合加载下花岗岩能量耗散试验研究   总被引:4,自引:0,他引:4  
利用改造的三维霍普金森试验系统(split Hopkinson pressure bar, SHPB),选取4个轴压水平(25, 50, 75和100 MPa)和4个围压水平(0, 5, 10和15 MPa),对应开展4种应变率(约70, 90, 110和130 s-1)下花岗岩三维动静组合加载试验研究,分析静载轴压、静载围压和应变率对花岗岩受冲击过程中能量耗散的影响规律,并讨论其破坏模式。试验结果表明:轴压增大时,花岗岩破坏时单位体积吸收能逐渐降低;围压或应变率增大时,单位体积吸收能逐渐升高。岩石储能极限在能量耗散过程中发挥关键作用,且不同情况下具体表现不同:储能极限与初始储能的差值影响岩石受冲击时的吸能值;当岩石在静载下进入损伤阶段初期时,储能极限与初始储能的比值决定岩石受冲击时的释能值;当岩石在静载下进入损伤阶段后期甚至发生屈服时,储能极限值正比于岩石释能值。此外,岩石破坏模式与单位体积耗散能关系密切:应变率相似静载组合变化时,破碎程度与单位体积吸收能变化呈负相关;静载组合确定应变率梯度变化时,破碎程度与单位体积吸收能变化呈正相关。  相似文献   

3.
温度与冲击荷载耦合下花岗岩动力性质   总被引:1,自引:0,他引:1  
为考察岩石的热动力学特性,利用改进的分离式霍普金森压杆,对不同实时温度下的花岗岩试样进行了50~250 s-1应变率的冲击压缩试验.基于测试数据,研究发现不同温度下应变率敏感性有所差别,700℃时花岗岩抗压强度的应变率效应最弱,而峰值应变的率效应非常明显,弹性模量的应变率效应无明显规律,如20℃和700℃时,弹性模量表现出随应变率升高而增大的趋势,但300℃和500℃时,其随应变率的增大而降低;较常温状态,300℃时花岗岩的抗压强度变化不大,当温度升高到500℃时,花岗岩热损伤效应明显,其动态抗压强度与弹性模量均大幅降低,而峰值应变呈增大趋势.700℃时热损伤现象突出,抗压强度与弹性模量迅速降低;此外,还发现当温度升高时,不但岩石的破碎程度加重,而且岩样的颜色也发生改变.  相似文献   

4.
为研究不同应变速率下盐岩损伤中的能量特征,结合室内单轴压缩试验和颗粒流程序(PFC-2D)进行不同应变率下盐岩模型模拟试验,分析盐岩模型的峰值强度,并运用岩石能量耗散理论分析不同应变速率下盐岩模型峰值强度处能量特征和单轴压缩过程中能量特征变化。结果表明:盐岩模型峰值强度随应变速率增加而增大;盐岩模型峰值强度处对应的总输入能量、可释放弹性应变能和耗散应变能均随应变速率的增加而增加;不同应变率下盐岩模型在相同压缩阶段能量特征变化基本相同,能量随轴向应变整体变化趋势受应变速率的影响较小;同一应变率下不同压缩阶段能量特征变化趋势不同,弹性阶段大部分外力功转化成可释放应变能;塑性阶段耗散应变能快速大幅增加;在破坏阶段耗散应变能持续增加,但弹性应变能出现降低。  相似文献   

5.
使用MTS815实验机对北山花岗岩进行了循环加卸载实验.基于实验结果,探讨了循环加卸载条件下北山花岗岩声发射特征,研究了北山花岗岩破裂过程中能量演化特征.结果表明:1)峰值应力前循环,卸载阶段弹性模量略大于加载阶段弹性模量.2)根据声发射变化特征可以很好地判定岩石所处的应力状态和损伤程度,并在一定程度上证明了岩石材料的Kaiser效应.3)峰值应力前,能量演化主要表现为以弹性能为主的聚集和释放;在峰值应力时耗散能迅速增多导致岩石内部结构发生根本性的变化,耗散能在峰后阶段所占比重持续增加导致岩石进入加速破坏阶段.4)峰值应力前,围压对弹性能和耗散能的影响很小;但弹性储能极限和岩石破坏所需的耗散能随围压的升高线性增大.  相似文献   

6.
为了研究钢纤维混凝土(SFRC)常温以及经历400和800℃高温后的动态压缩性能,采用改进的分离式Hopkinson压杆装置,结合应变直测技术对其进行了单轴冲击压缩试验.结果表明:经历400和800℃高温后,未掺钢纤维混凝土的峰值应力分别只有常温时的79.2%和38.9%,弹性模量分别降为常温时的82.8%和56.2%,同时,试件的能量吸收能力大幅度下降;钢纤维混凝土400,800℃对应的峰值应力分别降为常温时的76.8%和39.0%,弹性模量稍有降低,分别为常温的91.8%和82.7%,较基准混凝土有了较大的提高.钢纤维的加入可以增加混凝土的极限应力对应应变,曲线的下降段较为平缓,同时增强了混凝土的能量吸收能力,在20,400和800℃时,分别提高了38.5%,27.5%和25%.  相似文献   

7.
本文采用AZ31镁合金轧制弱织构板材进行热拉伸行为研究。使用Gleeble-3500型热模拟试验机,在变形温度为300℃~420℃、应变速率为0.001 s-1~1.0 s-1的条件下,进行高温拉伸试验,研究了变形参数对真实应力-应变曲线和样品微观组织的影响。同时,利用Arrhenius本构模型建立了本构方程,并依据试验结果绘制了热加工图。结果表明:合金的峰值应力和对应应变值随着温度的升高和应变速率的降低而不断减小。随着温度的升高,动态再结晶晶粒的体积分数明显减小,合金平均晶粒尺寸变大。当应变速率为0.1 s-1,同时在低温(300℃, 340℃)时,合金发生完全动态再结晶,晶粒细小且分布均匀。另外,镁合金轧制弱织构板材的激活能Q为170.98 kJ/mol,且最佳热变形区域为变形温度300℃~350℃及应变速率0.01 s-1~0.1 s-1。  相似文献   

8.
不同应力状态下北山花岗岩岩爆倾向性研究   总被引:1,自引:0,他引:1  
为研究不同应力状态下北山花岗岩岩爆倾向性,对北山花岗岩试件进行不同围压下的三轴试验,通过轴向压力和横向变形协调控制加载,获得不同围压下岩石全应力应变曲线,研究岩石破坏前能量聚集及破坏后能量释放特征。结果表明:破坏时弹性能、总能量随着围压增加而增大,且破坏后的总能量变化量及弹性能释放量也随着围压增加而增大。分析岩石储能系数和能量释放指数对岩石破坏的影响,发现岩石储能系数和能量释放指数随围压增加而增大;综合能量储存系数和能量释放指数建立新的岩爆倾向性评价指标,该指标不仅表述了岩石破坏前后各能量的综合变化特征,且能研究不同应力状态下岩石岩爆倾向性;使用该指标研究不同应力状态对北山花岗岩的岩爆倾向性,结果表明:北山花岗岩具有较强的岩爆倾向性,且随着围压增大,岩爆倾向性增加;当围压低于10 MPa时,围压对北山花岗岩岩爆倾向性影响较小,当围压超过10 MPa时,围压对岩爆倾向性的影响突然增加,但随着围压进一步增加,其对岩爆倾向性影响逐渐减弱。  相似文献   

9.
高围压卸荷条件下大理岩变形破坏及能量特征研究   总被引:1,自引:1,他引:0  
能量的耗散与释放是岩石变形破坏的本质。基于MTS815 Flex Test GT岩石力学试验平台,通过室内三轴卸荷试验和数学物理分析方法,揭示了大理岩在高围压三轴卸荷条件下的应力应变关系及能量变化特征。结果表明,初始围压的增大将显著提升岩样峰值强度时的可释放应变能以及最终总能量;随着围压的增大,岩样所吸收的能量变化的快慢程度随着偏应力变化而有所减缓;峰值强度时岩样可释放应变能占总能量的比例随着围压的增大而急剧增大,而残余强度时所吸收的总能量几乎全部转化为耗散能;大理岩能量指标存在明显的围压效应,即峰值总能量和残余总能量随着围压增大而显著提高,且具有良好的线性关系。  相似文献   

10.
为探究不同冲击荷载条件下花岗岩的动力学特性,采用分离式霍普金森压杆分别对花岗岩试样进行单次和重复冲击荷载试验,并对试样的应力-应变响应、应变率曲线特征、能量耗散特性以及破坏形态进行综合分析.结果表明:单次冲击下,试样动态抗压强度与比能量呈现对数函数关系,试样破坏程度随着比能量的增加而逐渐增大;随着入射波峰值应力的增加,应力-应变曲线峰后段的回弹现象逐渐减弱,应变率曲线呈现出愈加明显的“双峰”特征,其第2波峰逐渐高于第1波峰.重复冲击作用下,当试样未破坏时,应力-应变曲线基本经历弹性加载、损伤演化和峰后回弹3个阶段,当试样经历最后一次冲击时,应力-应变曲线峰后段形状与试样的破坏程度有关.此外,试样破坏时的累积比能量越大,其破坏越严重,应变率曲线由“单峰”逐渐向“双峰”过渡.  相似文献   

11.
高温后岩石变形破坏过程的能量分析   总被引:2,自引:0,他引:2  
从非平衡热力学角度出发,结合岩石在不同高温作用后的单轴压缩和声发射试验,详细阐述了岩石变形破坏过程中的声发射特点,分析了经历不同高温后岩石强度与能量耗散和能量释放之间的关系。研究结果表明高温作用后花岗岩声发射曲线大致经历了以下6个阶段:初始沉寂段、上升段、前峰值段、高幅持续段、后峰值段、后期沉寂段。声发射曲线较好地反映了岩石在整个破坏过程中由稳定态向亚稳定态、临界态、失稳破坏直至新的稳定态的发展过程。岩石峰值强度与耗散能呈反比关系,与弹性能呈正比关系,能量耗散使材料发生劣化,强度降低。声发射能率与弹性能呈正比关系,与耗散能呈反比关系,弹性能突然释放引起岩石的失稳破坏。岩石的破坏是能量耗散与能量释放共同作用的结果。研究结果有助于研究高温后受外载岩石微缺陷的演化并最终破裂的过程,对高温后岩体工程起到一定的参考作用。  相似文献   

12.
单轴压缩荷载下含黏结面花岗岩能量演化研究   总被引:3,自引:2,他引:1  
为探究能量演化在含黏结面不完整岩石受载过程中的规律,选取带有矿物质黏结斜面的花岗岩进行单轴循环加卸载压缩试验,同时在试验过程中进行声发射检测.得到以下结论:"有效能比"(累积弹性能/输入岩石的总能)可以作为岩石储能水平的表征,也可间接反映岩石内部结构随应力状态的改变;从整个加载过程来看,黏结面部位破坏的声发射释能短促、强烈,峰值强度时声发射持续时间较长,但声发射释能率相比黏结面破坏时较低;应力水平较低时,卸载过程中一般不会有声发射现象或声发射现象基本可以忽略,但当应力水平达到一定值时,即花岗岩积聚的弹性能超过了黏结面部位破坏的耗散能时,花岗岩在卸载时会发生短促、强烈的脆性破坏;由于声发射能量属于耗散能的一部分,定义"声发射检测效率"(声发射累积能量/累积耗散能),对于本次试验对象而言,"声发射检测效率"在压密阶段降低,弹性阶段升高,黏结面局部破坏时达到峰值,之后直至峰值强度该值呈现持续降低趋势;从能量角度分析,卸载破裂所对应的应力水平低于加载强度,但不应低于与峰值强度时耗散能大小相等的弹性能所对应的应力水平.  相似文献   

13.
用于分析岩爆倾向性的剩余能量指数   总被引:4,自引:0,他引:4  
通过分析岩石变形破坏过程中的能量变化,提出以岩石在峰值强度前储存的弹性应变能和峰值强度后稳定破坏所需的能量耗散之差(即剩余能量)与峰值强度后稳定破坏所需的能量耗散之比作为剩余能量指数,以反映岩石在峰值强度后区的动态特性;推导了剩余能量指数计算公式,并给出了其试验测定方法。此外,分析了将剩余能量指数作为岩爆倾向性指标的合理性,并采用铜陵有色金属冬瓜山深部矿床的典型矿岩进行了峰值前的循环加,卸载试验和变形破坏全过程试验,结合该矿床实际岩爆资料,对剩余能量指数与现有基于能量理论的岩爆倾向性指标进行分析,结果表明该指标能够较好地反映岩石的岩爆倾向性。  相似文献   

14.
对粗砂岩进行单轴试验测得其力学参数,然后采用颗粒流和fish程序获得粗砂岩的细观力学参数进行不同围压下的压缩试验,分析粗砂岩的变形和强度特性以及在变形破坏过程中的能量演化规律。获得主要结论:随着围压增加粗砂岩屈服阶段明显增加,峰值强度提高,峰后由明显软化逐渐向塑性流动过渡,表明随着围压增加粗砂岩脆性降低而延性提高,主应力表示的二次型强度准则比直线型更加贴近试验结果。粗砂岩在变形破坏过程中,弹性阶段吸收的能量主要以弹性应变能的形式存储,屈服阶段弹性应变能增速减缓而耗散能增速加快,围压越高峰值处对应的耗散能越大表明高围压下破坏时岩石内部损伤严重,峰后阶段弹性应变能在低围压下急剧减小而高围压下缓慢减小。弹性储能极限随围压增加呈现线性增大趋势,弹性应变能与岩石吸收总能量之比先减小而后趋于常值。  相似文献   

15.
针对压实粘性土体应变率敏感性,利用聚碳酸脂分离式Hopkinson压杆试验装置,对其动态力学性能进行了研究.结果表明:压实粘性土的动态强度、峰值强度增长因子和比能量吸收以及过应力与应变率呈近似指数关系,而动态峰值应变与峰值应变增长因子随应变率的增加而近似线性增加,这些均说明动态峰值强度和峰值应变均体现了显著的应变率相关性.同时进一步分析过应力与应变率(包括准静态)的关系表明:当应变率低于参考应变率时,动态强度受应变率的影响相对较小,而当应变率高于参考应变率时,动态强度受应变率的影响较大.  相似文献   

16.
针对隧道或城市地下工程施工过程中重复爆破对围岩稳定性的影响开展研究.在不同轴压等级和冲击荷载作用下,利用带轴压装置的霍普金森压杆装置,对含横向孔洞的花岗岩试件进行单轴循环冲击试验研究,分析了花岗岩试件在动态循环冲击荷载下的力学性质和能量吸收规律特性.通过建立基于在能量耗散的岩石损伤度的判定准则,利用累计比能量来表征岩石...  相似文献   

17.
高温后钢纤维活性粉末混凝土SHPB试验研究   总被引:1,自引:0,他引:1  
采用改进的分离式Hopkinson压杆装置,结合应变直测技术,分别对常温以及经历400℃和800℃高温的钢纤维活性粉末混凝土(SFRPC)进行了单轴冲击压缩试验,减少了传统的Hopkinson压杆试验中的入射波的高频震荡,使得应变率的波动性明显减小.试验结果表明,经历400℃和800℃后,钢纤维活性粉末混凝土的峰值应力分别将为常温状态的62010和27%,弹性模量降为83%和35. 6%,同时,高温也改变了试件的破坏形态.对活性粉末混凝土冲击过程中的能量吸收性能进行分析,试件在经历高温后,能量吸收能力大幅度下降,400℃和800℃的能量吸收能力分别是常温下的67.4%和42. 6%.  相似文献   

18.
采用全应力多场耦合三轴试验仪,对饱和花岗岩开展了不同加载速率、不同围压、不同孔压下的水-力耦合三轴压缩排水试验,分别给出了饱和花岗岩在不同加载速率、不同有效围压下的应力-应变曲线,分析了峰值强度、峰值应变、弹性模量随加载速率以及有效围压的变化规律。研究结果表明:(1)在不同有效围压和加载速率的条件下,岩样的应力应变曲线均经历了非线性压密、弹性、屈服、峰后四个阶段。偏压加载初期非线性压密阶段比较明显,而随着围压的升高非线性段逐渐消失;由于花岗岩的致密性较高,因而曲线的弹性阶段较长且相对平滑;在屈服和峰后阶段,岩石呈现出明显的脆—延性转化的过程。(2)饱和花岗岩的峰值强度随着加载速率的增加而增大;且当有效围压相同时,岩石的峰值强度大致相等,抵抗外界荷载的能力大致相同。(3)缓慢加载条件下饱和花岗岩的峰值应变表现出加载速率强化效应,但强化效果是有限的;且在有效围压相同条件下,随着围压和孔压的同步增长,峰值应变也呈增长的趋势。(4)弹性模量随着加载速率的增加呈二次多项式增长,但随着围压和孔压的同步增长而逐渐降低。  相似文献   

19.
采用自主研制的高温100 mm SHPB试验装置,研究了玄武岩纤维增强地聚物混凝土(BFRGC)的瞬时高温动态力学特性.采用厚度为1.0 mm,直径为30,35,40,45,50 mm的铝片作为整形器对入射波进行整形,保证了试验过程的有效性.结果表明:不同温度下,玄武岩纤维地聚物混凝土(BFRGC)的动态抗压强度、峰值应变和能量吸收特性随应变率的提高近似线性增长;200℃时BFRGC的动态抗压强度相对于常温时大幅度提高;随着温度的升高,BFRGC的峰值应变显著提高,且均大幅度高于常温时的峰值应变值;200~600℃时BFRGC的吸能特性明显优于常温状态,而800℃时能量吸收特性明显降低.  相似文献   

20.
对被动锁模光纤激光器系统谐振腔中每个器件进行建模;通过数值仿真实验研究了具有严格线性啁啾的耗散孤子在谐振腔内的演化过程;分析了腔内色散与掺镱光纤的饱和能量对耗散孤子脉宽与峰值功率特性参数的影响.仿真实验结果表明,耗散孤子的脉宽随着色散的增加而变宽,峰值功率随着色散的增加而减小.增益饱和能量对耗散孤子脉宽的影响是非单调的,在仿真实验条件下,当掺镱光纤的增益饱和能量的值为70 pJ时,脉宽达到最小值,而耗散孤子的峰值功率随着增益饱和能量的增加而增加,且变化趋势几乎是线性的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号