共查询到20条相似文献,搜索用时 15 毫秒
1.
表面肌电信号是利用表面电极然后记录的肌肉运动产生的生物电信号,表面肌电信号可以用来反映神经、肌肉的状态及功能.科学技术日益发展的今天,越来越多的研究人员针对基于sEMG的手部动作的问题进行探讨.截至目前,在体能训练、身体康复训练、医学临床及运动训练等领域取得巨大突破.随着深度学习模型的日益成熟,各种模型对sEMG信号手... 相似文献
2.
针对非线性SVM及LDA算法在肌电信号手势识别应用上的合理性问题进行实验,比较新型非线性支持向量机(SVM)分类方法和实际应用中常用的线性判别分析(LDA)在肌电图手势识别上的优劣。首先采用1到6不同数量的电极采集3组不同的手臂动作的前臂肌电信号,记录数据。然后,通过计算机编写算法程序对比SVM和LDA两种方法在不同电极数量下的肌电手势识别的准确率。最后得出结论,2种算法的手势识别率与肌电电极数量密切相关,根据电极数选择合适的分类算法。分析表明,该实验在减少电极数量情况下对手势识别算法的选择有重要意义。 相似文献
3.
《电子技术与软件工程》2017,(17)
利用背景建模得到运动目标的前景后,如何对动作提取有效的信息进行分类是能否成功识别手势的关键。本文利用混合高斯模型GMM得到的前景图像序列获得运动历史图MHI,进而对各个动作的MHI提取HOG特征,通过支持向量机SVM的训练后可以准确识别不同的手势动作。 相似文献
4.
5.
6.
7.
8.
针对利用摄像机进行人体动作识别时易受视距和光线影响等问题,提出一种基于FMCW雷达的人体复杂动作识别方案。首先基于FMCW信号模型对雷达采样数据采用一种以RDM(Range Doppler Map)向速度维投影的方式逐帧构建微多普勒谱图,继而基于微多普勒谱图来提取用于表征整个动作频谱相关信息的8种特征矢量。最后,基于雷达实测数据,以贝叶斯超参数调整优化后的支持向量机作为分类器,分析利用所提取的单特征矢量以及特征矢量组合来进行分类时对分类准确率的影响,用以筛选最优异的特征矢量组合。实验结果表明,从微多普勒谱图中所提取的特征矢量皆可直观地表述整个动作过程的特性,且利用最终筛选得到的最优异的特征矢量组合对已知个体和未知个体的9种动作进行识别,识别准确率分别高达99.07%和96.76%。 相似文献
9.
基于多特征融合与支持向量机的手势识别 总被引:1,自引:0,他引:1
针对手势识别中人的手部特征描述易受到环境因素影响,手势识别率低等问题,并考虑到单个特征的局限性,提出了一种基于Hu矩和HOG特征融合的支持向量机手势识别新方法。该方法首先对处理后的手势图像提取局部的HOG特征,然后针对手势的轮廓提取全局Hu矩特征,再将两种特征融合成混合特征,并通过主成分分析法对混合特征进行降维形成最终分类特征,并将新特征输入到支持向量机中进行识别。实验表明,该方法具有较好的鲁棒性和较高的识别率。 相似文献
10.
面向网页交互场景下的数字手势识别存在背景复杂度、识别计算量大等问题,提出一种基于改进的支持向量机(Supportive Vector Machine,SVM)与卷积神经网络(Convolutional Neural Network,CNN)相结合的数字手势检测与识别算法.根据复杂背景下手势提取的特点,提出一种通过肤色检... 相似文献
11.
在传统的手势识别中,多数是通过人工神经网络,隐Markov模型和几何边缘特征等算法。以一种改进的SVM统计向量机算法对手势特征集进行精确识别,通过进行适当函数子集的选择,使判别函数的识别率达到最优,得到一个具有推广泛化能力和最优分类能力学习机,该方法能够保证特征子集的划分的识别效果等价于对整个样本集。通过Kinect进行手势识别测试,结果表明基于改进的SVM向量机手势识别算法具有较好的精确性和准确度。 相似文献
12.
13.
14.
15.
根据支持向量机结构风险最小化原则和量子粒子群快速全局优化的特点,提出了干扰样式识别的QPSO-SVM算法。采用量子粒子群算法优化支持向量机参数,建立了干扰样式特征组分识别的模型,经过仿真试验,表明该算法具有识别率高,计算时间短的优点。 相似文献
16.
17.
18.
提出一种基于粒子群优化算法的支持向量机网络,并把它应用到语音情感识别系统中。依据情感的维度空间模型,研究分析情感语音数据的韵律特征与音质特征。利用粒子群优化算法(PSO)训练网络的超参数以优化支持向量机模型,可快速地实现网络的收敛。最后在实验中比较线性核函数SVM、径向基核函数SVM与粒子群优化径向基SVM分别用于语音情感识别的识别率,结果显示粒子群优化径向基核SVM模型用于语音情感识别能获得明显的识别性能的提升。 相似文献
19.
将梯度方向直方图特征,结合支持向量机应用于手势检测中,可有效减弱光照、手势旋转等因素所带来的影响,并对HOG提取过程及参数设置进行了详细分析,同时结合线性SVM训练出了检测效果较好的分类器。通过实验证明,将HOG特征提取与SVM学习算法结合,手势检测的应用限制将大幅降低。 相似文献
20.
《无线电工程》2019,(7):587-591
针对传统手势识别方法中人工特征提取信息不完整导致的识别率较低以及识别手势类别较少的问题,基于卷积神经网络(Convolutional Neural Network,CNN)的原理,设计了一种深度CNN框架,对多通道的表面肌电信号进行手势动作识别。所应用的表面肌电信号数据来自Ninapro数据库中DB2健康个体数据集,分别识别9种手指动作和49种手势动作(49种手势动作包含9种手指动作),另外40种手势动作是17种基本手势动作和23种手腕动作。对数据集的表面肌电信号数据进行提取均方根值特征,生成12通道的训练集、验证集和测试集。将处理过的表面肌电信号送入到深度CNN中,经过卷积、批次归一化、池化、梯度下降及dropout层处理,仿真测试后,DB2数据集的9种手势动作识别率是99.10%,49种手势动作手势不识别率是64.58%。 相似文献