首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum nitride (AlN) powders were synthesized by gas reduction–nitridation of γ-Al2O3 using NH3 and C3H8 as the reactant gases. AlN was identified in the products synthesized at 1100°–1400°C for 120 min in the NH3–C3H8 gas flow confirming that AlN can be formed by the gas reduction–nitridation of γ-Al2O3. The products synthesized at 1100°C for 120 min contained unreacted γ-Al2O3. The 27A1 MAS NMR spectra show that Al–N bonding in the product increases with increasing reaction temperature, the tetrahedral AlO4 resonance decreasing prior to the disappearance of the octahedral AlO6 resonance. This suggests that the tetrahedral AlO4 sites of the γ-Al2O3 are preferentially nitrided than the AlO6 sites. AlN nanoparticles were directly formed from γ-Al2O3 at low temperature because of this preferred nitridation of AlO4 sites in the reactant. AlN nanoparticles are formed by gas reduction–nitridation of γ-Al2O3 not only because the reaction temperature is sufficiently low to restrict grain growth, but also because γ-Al2O3 contains both AlO4 and AlO6 sites, by contrast with α-Al2O3 which contains only AlO6.  相似文献   

2.
An experimental study has been conducted to evaluate the formation of nano α-Al2O3 under various conditions, such as different calcining temperatures and emulsion ratios of aqueous aluminum nitrate solutions and oleic acid with a high-speed stirring mixer. Four batches of the precursor powders were calcined at three different temperatures of 1000°, 1050°, and 1100°C for 2 h and a terminal product of nano α-Al2O3 powders was obtained. The products have been identified by X-ray diffraction (XRD), specific surface area measurement scanning electron microscope, and transmission electron microscope (TEM). The XRD results show that the phase of powders is determined to be α-Al2O3, indicating that the overall process has been effective. The optimum calcination temperature of the precursor powder for crystallization of nano α-Al2O3 was found to be 1000°C for 2 h. The TEM image indicates that the particle grains have a sub-spherical shape with a mean size of 50–100 nm.  相似文献   

3.
The effect of Cr and Fe in solid solution in γ-Al2O3 on its rate of conversion to α-Al2O3 at 1100°C was studied by X-ray diffraction. The δ form of Al2O3 was the principal intermediate phase produced from both pure γ-Al2O3 and that containing Fe3+ in solid solution, although addition of Fe greatly reduced crystallinity. Reflectance spectra and magnetic susceptibilities showed that Cr exists as Cr6+ in γ-Al2O3 and as Cr3+ in α-Al2O3, with θ-Al2O3 as the intermediate phase. The intermediates formed rapidly, and the rates of their conversion to α-Al2O3 were increased by 2 and 5 wt% additions of Fe and decreased by 2 and 4 wt% additions of Cr. An approximately linear relation observed between α-Al2O3 formation and decrease in specific surface area was only slightly affected by the added ions. This relation can be explained by a mechanism in which the sintering of δ- or θ-Al2O3, within the aggregates of their crystallites, is closely coupled with conversion of cubic to hexagonal close packing of O2- ions by synchro-shear.  相似文献   

4.
Nanostructured Al2O3 powders have been synthesized by combustion of aluminum powder in a microwave oxygen plasma, and characterized by X-ray diffraction and electron microscopy. The main phase is γ-Al2O3, with a small amount of δ-Al2O3. The particles are truncated octahedral in shape, with mean particle sizes of 21–24 nm. The effect of reaction chamber pressure on the phase composition and the particle size was studied. The γ-alumina content increases and the mean particle size decreases with decreasing pressure. No α-Al2O3 appears in the final particles. Electron microscopy studies find that a particle may contain more than one phase.  相似文献   

5.
Nanocrystalline α-Al2O3 ceramic powders have been prepared from an aqueous solution of aluminum nitrate and sucrose. Soluble Al ion-sucrose solution forms the precursor material once it is completely dehydrated. Heat treatment of the dehydrated precursors at low temperature (600°C) results in the formation of porous single-phase α-Al2O3. The precursor and heat-treated powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and BET surface area analysis. The phase-pure nanocrystalline α-Al2O3 particles had an average specific surface area of >190 m2/g, with an average pore size between 18 and 25 nm.  相似文献   

6.
An electroconductive TiN/Al2O3 nanocomposite was prepared by a selective matrix grain growth method, using a powder mixture of submicrosized α-Al2O3, nanosized γ-Al2O3, and TiN nanoparticles synthesized through an in situ nitridation process. During sintering, a self-concentration of TiN nanoparticles at the matrix grain boundary occurred, as a result of the selective growth of large α-Al2O3 matrix grains. Under suitable sintering conditions, a typical interlayer nanostructure with a continuous nanosized TiN interlayer was formed along the Al2O3 matrix grain boundary, and the electroconducting behavior of the material was significantly improved. Twelve volume percent TiN/Al2O3 nanocomposite with such an interlayer nanostructure showed an unprecedentedly low resistivity of 8 × 10−3Ω·cm, which was more than two orders lower than the TiN/Al2O3 nanocomposite without such an interlayer nanostructure.  相似文献   

7.
Fine A12O3 powder was prepared by the gas-phase oxidation of aluminum acetyl-acetonate. The reaction products were amorphous material at 600° and 800°C, γ-Al2O3 at 1000° and 1200°C, and δ-Al2O3 at 1400°C. The powders consisted of spherical particles from 10 to 80 nm in diameter; particle size increased with increasing reaction temperature and concentration of chelate in the gas.  相似文献   

8.
The subsolidus phase equilibrium diagram for the pseudobinary join MgAl2O4-Ga2O3 was determined. The shape of the exsolution boundary was obtained by heat-treating samples pre- equilibrated at 1600°C. Crystalline solubility of Ga2O3 in MgAl2O4 decreased from 73 mole % at 1600°C to 55 mole % at 1200°C. The crystalline solution was formed by the replacement of Mg2+ions by Ga3+ ions to produce a cation defect spinel. The phase precipitated was the mono-clinic δ-Ga2O3 (=δ-Al2O3 structure). Changes in the ratios of relative X-ray diffraction intensities indicated that the crystalline solutions also disorder with temperature.  相似文献   

9.
α-Al2O3 platelet powders were synthesized in molten Na2SO4 flux. The size of α-Al2O3 platelets was significantly reduced when partially decomposed rather than pure Al2(SO4)3 was used as the source of Al2O3; a further reduction in the platelet size was realized through additional seeding with nanosized α-Al2O3 seeds. The addition of microsized α-Al2O3 platelet seeds significantly influenced the platelet morphology of the final powder, as well. The platelet size of the final powder was in direct proportion to the size of the platelet seeds, and was in reverse proportion to the cube root of the platelet seed content.  相似文献   

10.
The combined effect of rapid sintering by spark-plasma-sintering (SPS) technique and mechanical milling of γ-Al2O3 nanopowder via high-energy ball milling (HEBM) on the microstructural development and mechanical properties of nanocrystalline alumina matrix composites toughened by 20 vol% silicon carbide whiskers was investigated. SiCw/γ-Al2O3 nanopowders processed by HEBM can be successfully consolidated to full density by SPS at a temperature as low as 1125°C and still retain a near-nanocrystalline matrix grain size (∼118 nm). However, to densify the same nanopowder mixture to full density without the benefit of HEBM procedure, the required temperature for sintering was higher than 1200°C, where one encountered excessive grain growth. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicated that HEBM did not lead to the transformation of γ-Al2O3 to α-Al2O3 of the starting powder but rather induced possible residual stress that enhances the densification at lower temperatures. The SiCw/HEBMγ-Al2O3 nanocomposite with grain size of 118 nm has attractive mechanical properties, i.e., Vickers hardness of 26.1 GPa and fracture toughness of 6.2 MPa·m1/2.  相似文献   

11.
In investigating possible effects of high temperatures on a V2O5/γ-Al2O3 catalyst, it was found that metastable aluminas with unusually well-developed crystallinity can be prepared in the presence of V2O5. With control of firing temperature, time, and atmosphere, δ-, θ-, and k -Al2O3 could be obtained in this state. X-ray powder diffraction patterns containing many more lines than usually observed were indexed, unit-cell dimensions calculated, and values compared with previous data. All preparations contained small amounts of V which could not be removed by H2O2; ESR revealed V4+ ions in them.  相似文献   

12.
The crystallization of Al2O3-rich glasses in the system SiO2-Al2O3 which were prepared by flame-spraying and/or splat-cooling was studied by DTA, electron microscopy, and X-ray diffraction. Over a wide range of compositions, the crystallization temperature ( Tx ) remained near 1000°C, changing smoothly with composition. In all cases crystallization of mullite was detected by X-ray diffraction. In the low-Al2O3 region, coarsening of the microstructure during crystallization was observed by electron microscopy. In the high-Al2O3 region mullite and γ-Al2O3 cocrystallized; this behavior may be interpreted as evidence of a cooperative process of crystallization at the respective Tx 's. The crystallite size of the mullite immediately after rapid crystallization increased continuously with increasing Al2O3 content. In light of the Tx data, the adequacy of the evidence for the proposed metastable miscibility gap in the SiO2-Al2O3 system is questioned.  相似文献   

13.
The structure of Na- and Ca-β"-Al2O3 coatings on α-Al2O3 single-crystal platelets has been studied by optical and electron microscopy and X-ray and electron diffraction. The growth features and potential interface weakening effects of the modified platelets in dispersed-particle reinforced composites are discussed.  相似文献   

14.
The Bi2O3–Nb2O5–NiO phase diagram at 1100°C was determined by means of solid-state synthesis, X-ray diffraction, and scanning electron microscopy. A ternary eutectic with a melting point below 1100°C was found to exist in the field between NiO, Bi2O3, and the end-member of the δBi2O3–Nb2O5 solid solution. The existence of the previously reported Bi3Ni2NbO9 phase was disproved. A pyrochlore homogeneity range around Bi1.5Ni0.67Nb1.33O6.25 was determined together with all the phase relations in this phase diagram.  相似文献   

15.
Mechanical mixture of γ-Al2O3 and amorphous SiO2, and diphasic Al2O3/SiO2 gels of three different compositions were synthesized. They were subjected to heat treatment to various temperatures in the range 900°–1600°C. Qualitative X-ray diffraction data show that these diphasic gels do not crystallize to a combined mixture of θ-Al2O3 and α-Al2O3 polymorphs at the intermediate stage, prior to mullite formation. Estimated mullite formation data show that the course of its formation from mixed oxides was different from that of diphasic gels. Results are compared with previous findings and the concept of Al–Si spinel formation in the phase transformation of stoichiometric diphasic gel system is substantiated.  相似文献   

16.
Gradient, porous alumina ceramics were prepared with the characteristics of microsized tabular α-Al2O3 grains grown on a surface with a fine interlocking feature. The samples were formed by spin-coating diphasic aluminosilicate sol on porous alumina substrates. The sol consisted of nano-sized pseudo-boehmite (AlOOH) and hydrolyzed tetraethyl orthosilicate [Si(OC2H5)4]. After drying and sintering at 1150°–1450°C, the crystallographic and chemical properties of the porous structures were investigated by analytical electron microscopy. The results show that the formation of tabular α-Al2O3 grains is controlled by the dissolution of fine Al2O3 in the diphasic material at the interface. The nucleation and growth of tabular α-Al2O3 grains proceeds heterogeneously at the Al2O3/glass interface by ripening nano-sized Al2O3 particles.  相似文献   

17.
ZnNb2O6 (ZN) is a columbite-structured niobate compound showing excellent dielectric properties and comparatively low sintering temperatures (∼1200°C). Hence it is a good candidate for possible low-temperature cofired ceramics (LTCC) applications. In the present investigation, ZnNb2O6 was synthesized in the form of micrometer-sized powder using a conventional solid-state ceramic synthesis route as well as in the form of nanosized powder by a polymer complex method. The finite size effect of ZN particles on sinterability and microwave dielectric properties of sintered pellets was evaluated. The phase formation was confirmed from the X-ray diffraction (XRD) analysis. The particle size distribution of the nanoparticles was found to be of the order of 18–20 nm by using high-resolution transmission electron microscopy analysis and 30 nm by analyzing the XRD patterns using Debye Scherrer's formula, after correcting for the instrument broadening effects. A ZN–60ZnO–30B2O3–10SiO2 (ZBS) composite was made by adding predetermined amounts of glasses. The microstructures of the sintered pellets of ZN and ZN–ZBS composites were examined using scanning electron microscopy and analyzed using image analysis. The nano-ZN–ZBS composites were sintered to 93% of the reported density at 925°C/2 h, with microwave dielectric properties of ɛr=22.5, Q × f ∼12 800 GHz, and τf=−69.6 ppm/°C, emerging as a potential material for possible LTCC applications.  相似文献   

18.
A novel method for the preparation of Al2O3–TiN nanocomposites was developed. A mixture of TiO2, AlN, and Ti powder was used as the starting material to synthesize the Al2O3–TiN nanocomposite under 60 MPa at 1400°C for 6 min using spark plasma sintering. X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy were used for detailed microstructural analysis. Dense (up to 99%) nanostructured Al2O3–TiN composites were successfully fabricated, the average grain size being less than 400 nm. The fracture toughness ( K I C ) and bending strength (σb) of the nanostructured Al2O3–TiN composites reached 4.22±0.20 MPa·m1/2 and 746±28 MPa, respectively.  相似文献   

19.
Single-crystal and polycrystalline films of Mg-Al2O4 and MgFe2O4 were formed by two methods on cleavage surfaces of MgO single crystals. In one procedure, aluminum was deposited on MgO by vacuum evaporation. Subsequent heating in air at about 510°C formed a polycrystalline γ-Al2O8 film. Above 540°C, the γ-Al2O, and MgO reacted to form a single-crystal MgAl2O4 film with {001} MgAl2O4‖{001} MgO. Above 590°C, an additional layer of MgAl2O4, which is polycrystalline, formed between the γ-Al2O3 and the single-crystal spinel. Polycrystalline Mg-Al2O4 formed only when diffusion of Mg2+ ions proceeded into the polycrystalline γ-Al2O3 region. Corresponding results were obtained for Mg-Fe2O4. MgAl2O4 films were also formed on cleaved MgO single-crystal substrates by direct evaporation, using an Al2O3 crucible as a source. Very slow deposition rates were used with source temperatures of ∼1350°C and substrate temperatures of ∼800°C. Departures from single-crystal character in the films may arise through temperature gradients in the substrate.  相似文献   

20.
The rate of ZnA12O4 formation for binary powder mixtures of ZnO and α-Al2O3 (dense coarse particles and weak agglomerates of fine powder) fired in air or O2 atmospheres was measured and the microstructures of those systems were observed by scanning electron microscopy. With dispersed dense particles of α-Al2O3, the Al2O3 surfaces were covered with ZnO and the spinel grew into the particles maintaining essentially a constant reaction interface area. Calculations based on geometric measurements and use of Jander's equation gave a similar high activation energy, 354 kJ/mol, which corresponds to the activation energy of volume diffusion of Zn2+ in ZnAl2O4. An oxygen atmosphere had no effect. With a matrix of fine α-Al2O3 powder and dispersed granules of ZnO, a higher reaction rate occurred because of an increase in reaction interface area due to penetration of the powder compact matrix by ZnO vapor, which was enhanced by an O2 atmosphere. The reaction layer grew into the alumina matrix adjoining the ZnO granules with a parabolic rate law. Apparent activation energies below ∼200 kJ/mol were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号