首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Today, markets increasingly require more customized products, with shorter life cycles. In response, manufacturing systems have evolved from mass production techniques, through flexible automation and mass customization, to produce at mass production costs. Manufacturing facilities must incorporate more flexibility and intelligence, evolving toward reconfigurable manufacturing systems (RMS). RMS are amid to posses such flexibility and responsiveness and said to be the next generation of world class systems. RMS are designed for rapid change in structure and for a quickly adjustable production capacity. This paper proposes a new methodology (high level process) of framework using flexible and reconfigurable manufacturing systems principles for automotive framing systems as well as to provide a guideline to support the structure of different stages of the design methodology. The proposed methodology is presented through a case study using data based on actual production systems of three different styles; (process and design data) which supports the hypothesis of the research.  相似文献   

2.
可重构制造系统监督控制器的自动重构   总被引:2,自引:0,他引:2  
李俊  戴先中  孟正大 《自动化学报》2008,34(11):1337-1347
提出了基于改进的网重写系统(Improved net rewriting system, INRS)的可重构制造系统(Reconfigurable manufacturing systems, RMS) Petri网监督控制器的自动重构方法, 以快速适应由市场需求变化所引起的制造系统构形的频繁变化. INRS解决了网重写系统存在的问题, 可动态调整给定Petri网模型的结构而不改变其行为属性. 以集合和图的组合形式定义了RMS的构形, 并提出了基于INRS的一类模块化、可重构的Petri网控制器的设计方法. 针对这类Petri网控制器, 提出了基于INRS的自动重构方法. 方法可将RMS构形的变化转变为INRS的图重写规则, 并作用于当前Petri网控制器, 使其快速、自动地重构为所求的新控制器. 所提出的Petri网控制器的设计与重构方法, 均从理论上保证了结果的正确性, 免校验. 仿真研究验证了方法的有效性.  相似文献   

3.
The advent of reconfigurable manufacturing systems (RMSs) has given rise to a challenging problem, i.e., how to reconfigure rapidly and validly a RMS supervisory controller in response to frequent changes in the manufacturing system configuration driven by fluctuating market. This paper presents an improved net rewriting system (INRS)-based method for automatic reconfiguration of Petri net (PN) supervisory controllers for RMS. We begin with presenting the INRS which overcomes the limitations of the net rewriting system and can dynamically change the structure of a PN without damaging its important behavioral properties. Based on INRS, a method for design reconfigurable PN controllers of RMS is introduced. Subsequently, we presented an INRS-based method for rapidly automatic reconfiguration of this class of PN controllers. In the reconfiguration method, changes in a RMS configuration can be formalized and act on an existing controller to make it reconfigure rapidly into a new one. Noticeably, no matter the design or reconfiguration, the expected behavioral properties of the resultant PN controllers are guaranteed. Thus, efforts for verification of the results can be avoided naturally. We also illustrate the reconfiguration of a PN controller for a reconfigurable manufacturing cell.  相似文献   

4.
To respond rapidly to the highly volatile market, the emerging reconfigurable manufacturing systems (RMS) have brought forward two challenging issues, namely, how to build rapid a formal model of an initial manufacturing configuration and how to yield the goal model from the existing one along with manufacturing configuration changes (reconfiguration). As for the issues, we present in this paper a method for rapid design of Petri net (PN) formalized models of RMS, intended for supervisory control and logic control of RMS, as well as a method for automated reconfiguration of the models. Firstly, we present an improved net rewriting system (INRS) for dynamically operating net transformation, unlike its predecessor-net rewriting system, where the initial behavioral properties of the underlying PN rewritten can be preserved during the transformation. Subsequently, the paper proposes the three-phase method for rapid design of initial full PN models of reconfigurable manufacturing cells (RMCs). In this method, activity diagrams of Unified Modeling Languages version 2 (UML 2) are used to describe manufacturing configurations, firstly; then the sub-activity diagrams are transformed into PN sub-models; finally, the PN sub-models are automated synthesized into a full model by the approach of INRS. Further, we present a model reconfiguration method for this class of PN models. The method compares changes in activity diagrams of the existing and goal manufacturing configurations and converts them into net rewriting rules of INRS. By applying the rules obtained, the existing PN model can reconfigure into a new one for the goal manufacturing configuration. No matter the design method or the reconfiguration method, the behavioral properties of the obtained PN models, e.g., liveness, boundedness, or reversibility, can be guaranteed and thereby the efforts of verification can be avoided. Finally, rapid design of a PN model of a reconfigurable manufacturing cell, as well as its automated reconfiguration, is illustrated with the help of an example. The result indicates the validity of the methods.  相似文献   

5.
In today’s global manufacturing environment, changes are inevitable and something that every manufacturer must respond to and take advantage of, whether it is in regards to technology changes, product changes, or changes in the manufacturing processes. The reconfigurable manufacturing system (RMS) meets this challenge through the ability to rapidly and efficiently change capacity and functionality, which is the reason why it has been widely labelled the manufacturing paradigm of the future. However, design of the RMS represents a significant challenge compared to the design of traditional manufacturing systems, as it should be designed for efficient production of multiple variants, as well as multiple product generations over its lifetime. Thus, critical decisions regarding the degree of scalability and convertibility of the system must be considered in the design phase, which affects the abilities to reconfigure the system in accordance with changes during its operating lifetime. However, in current research it is indicated that conventional manufacturing system design methods do not support the design of an RMS and that a systematic RMS design method is lacking, despite the fact that numerous contributions exist. Moreover, there is currently only limited evidence for the breakthrough of reconfigurability in industry. Therefore, the research presented in this paper aims at synthesizing current contributions into a generic method for RMS design. Initially, currently available design methods for RMS are reviewed, in terms of classifying and comparing their content, structure, and scope, which leads to a synthesis of the reviewed methods into a generic design method. In continuation of this, the paper includes a discussion of practical implications related to carrying out the design, including an identification of potential challenges and an assessment of which tools that can be applied to support the design. Conclusively, further areas for research are indicated, which provides valuable knowledge of how to develop and realize the benefits of reconfigurability in industry.  相似文献   

6.
可重构制造系统的关键技术   总被引:9,自引:0,他引:9  
可重构制造系统是一种新型的制造模式 .本文中详细阐述了可重构制造系统的特点以及研究内容 ,并提出了拟开展的一些研究工作  相似文献   

7.
To cope with the rapid change in manufacturing market requirements, reconfigurable manufacturing systems (RMSs) with the feature of reconfigurability, have to be developed. A model that describes the reconfiguring process of a manufacturing system is developed by applying colored timed object-oriented Petri nets. Based on the main difference between configurations of RMSs and flexible manufacturing systems (FMSs), a modular hierarchical structure of RMS is developed. By the object-oriented method, all the object classes in the RMS model are identified. A macro-place is used to model the aggregation of many processes and a macro-transition is used to link all the related macro-places. Macro-places and macro-transitions are connected with arcs to form a Petri net named a macro-level Petri net so that the control logic of RMS is represented. The macro-level Petri net is refined by hierarchical steps, each step describing these macro-places by more detailed sub macro-places until all the macro-places cannot be divided. Then the characteristics of material flow and time constraints in RMS are modeled by applying colored tokens and associated time-delay attributes. This model integrates object-oriented methods, stepwise refinement ideas and Petri nets together. The RMS activities can be encapsulated and modularized by the proposed method, so that RMS can be easily constructed and investigated by the system developers.  相似文献   

8.
To respond rapidly to the highly volatile market, the reconfigurable manufacturing systems (RMS) have brought forward challenging issues. First of all there is a need to build a formal model of a manufacturing configuration. Second it has to be rather easy to derive the models associated to the manufacturing configuration changes (reconfiguration) from such an initial model. An off-line method of rapid design of an optimal logic control law (configuration) based on Petri net (PN) is presented in this paper. From a controlled system modeling point of view, the main characteristics of the level 1 of the CIM architecture are depicted. Subsequently, the formal tool used in the automated planning field is extended to provide a controlled system model. The concept of operation is structured in order to introduce the behavioral properties of the operations. A four-step method is then proposed to design a logic control law that satisfies several goals: reduction of the lead time, satisfaction of the work orders objectives, minimization of the time cycle. Finally, the proposed design method is illustrated on a manufacturing cell.  相似文献   

9.
This paper deals with a problem of reconfigurable manufacturing systems (RMSs) design based on products specifications and reconfigurable machines capabilities. A reconfigurable manufacturing environment includes machines, tools, system layout, etc. Moreover, the machine can be reconfigured to meet the changing needs in terms of capacity and functionality, which means that the same machine can be modified in order to perform different tasks depending on the offered axes of motion in each configuration and the availability of tools. This problem is related to the selection of candidate reconfigurable machines among an available set, which will be then used to carry out a certain product based on the product characteristics. The selection of the machines considers two main objectives respectively the minimization of the total cost (production cost, reconfiguration cost, tool changing cost and tool using cost) and the total completion time. An adapted version of the non- dominated sorting genetic algorithm (NSGA-II) is proposed to solve the problem. To demonstrate the effectiveness of the proposed approach on RMS design problem, a numerical example is presented and the obtained results are discussed with suggested future research.  相似文献   

10.
With burgeoning global markets and increasing customer demand, it is imperative for companies to respond quickly and cost effectively to be present and to take the lead among the competitors. Overall, this requires a changeable structure of the organization to cater to a wide product variety. It can be attained through adoption of the concept of reconfigurable manufacturing system (RMS) that comprises of reconfigurable machines, controllers and software support systems. In this paper, we propose a new approach to generate the dynamic process plan for reconfigurable manufacturing system. Initially, the requirements of the parts/products are assessed which are then compared with the functionality offered by machines comprising manufacturing system. If the production is feasible an optimal process plan is generated, otherwise the system shows an error message showing lack of functionality. Using an adapted NSGA-2 algorithm, a multi-objective scenario is considered with the aim of reducing the manufacturing cost and time. With the help of a numerical example, the efficacy of the proposed approach is demonstrated.  相似文献   

11.
利用决策支持系统分析可重构制造系统中的问题   总被引:2,自引:0,他引:2  
可重构制造系统是面向新世纪的先进制造模式 .本文提出利用决策支持系统解决可重构制造系统所面临的重构决策问题 ,在系统决策、加工单元布局、以及可重构产品的生产计划问题上采用智能化算法 ,可以得到满意的结果  相似文献   

12.
可重构制造系统可重构逻辑控制器设计与实现   总被引:2,自引:0,他引:2  
针对可重构制造系统的逻辑控制问题,提出一种可重构逻辑控制器的解决方案.该逻辑控制器具有递阶分布式的控制体系结构,并根据模块化的设计思想设计成多个分离的功能模块.然后给出基于CORBA组件模型(CCM)的可重构逻辑控制器软件的开发过程.由递阶分布式体系、模块化设计和软件组件开发技术实现的可重构逻辑控制器具有快速动态重构的能力,能满足可重构制造系统逻辑控制的要求.  相似文献   

13.
可重构制造系统的多Agent模型   总被引:1,自引:0,他引:1  
论文在介绍可重构制造系统重构方法的基础上,给出了可重构制造系统多Agent模型的结构,并详细描述了基于该模型的可重构车间加工系统的重构算法,最后对重构算法进行仿真验证了该算法的可行性。  相似文献   

14.
Reconfigurability is essential for semiconductor manufacturing systems to remain competitive. Reconfigurable systems avoid costly modifications required to change and adapt to changes in product, production and services. A fully automated, collaborative, and integrated while reconfigurable manufacturing system proves cost-effective in the long term and is a promising strategy for the semiconductor manufacturing industry. However, there is a lack of computing models to facilitate the design and development of control and management systems in a truly reconfigurable manner. This paper presents an innovative computing model for reconfigurable systems and controlled manufacturing processes while allowing for the integration of modern technologies to facilitate reconfiguration, such as radio frequency identification (RFID) and reconfigurable field programmable gate array (FPGA). Shop floor manufacturing activities are modeled as processes from a business perspective. A process-driven formal method that builds on prior research on virtual production lines is proposed for the formation of a reconfigurable cross-facility manufacturing system. The trajectory of the controlled manufacturing systems is optimized for on-demand production services. Reconfigurable process controllers are introduced in support of the essential system reconfigurability of future semiconductor manufacturing systems. Implementation of this approach is also presented.  相似文献   

15.
Reconfigurable manufacturing systems: Key to future manufacturing   总被引:66,自引:3,他引:66  
Presented in this article is a review of manufacturing techniques and introduction of reconfigurable manufacturing systems; a new paradigm in manufacturing which is designed for rapid adjustment of production capacity and functionality, in response to new market conditions. A definition of reconfigurable manufacturing systems is outlined and an overview of available manufacturing techniques, their key drivers and enablers, and their impacts, achievements and limitations is presented. A historical review of manufacturing from the point-of-view of the major developments in the market, technology and sciences issues affecting manufacturing is provided. The new requirements for manufacturing are discussed and characteristics of reconfigurable manufacturing systems and their key role in future manufacturing are explained. The paper is concluded with a brief review of specific technologies and research issues related to RMSs.  相似文献   

16.
This paper provides a fundamental research review of Reconfigurable Manufacturing Systems (RMS), which uniquely explores the state-of-the-art in distributed and decentralized machine control and machine intelligence. The aim of this review is to draw objective answers to two proposed research questions, relating to: (1) reconfigurable design and industry adoption; and (2) enabling present and future state technology. Key areas reviewed include: (a) RMS – fundamentals, design rational, economic benefits, needs and challenges; (b) Machine Control – modern operational technology, vertical and horizontal system integration, advanced distributed and decentralized control; (c) Machine Intelligence – distributed and decentralized paradigms, technology landscape, smart machine modelling, simulation, and smart reconfigurable synergy. Uniquely, this paper establishes a vision for next-generation Industry 4.0 manufacturing machines, which will exhibit extraordinary Smart and Reconfigurable (SR*) capabilities.  相似文献   

17.
The Reconfigurable Manufacturing System (RMS) paradigm has been developed to address challenges in the design of manufacturing systems and equipment that will meet the demands of modern manufacturing. This research involved the development of Modular Reconfigurable Machines (MRMs); as an emerging technology in reconfigurable manufacturing. MRMs are mechanically modular machines. The modularity permits the kinematic architecture and processing functions of the machine to be reconfigured to meet changing production requirements. This paper will focus on aspects of the mechanical design and the development of a control system that supported the modularity and reconfigurability of the mechanical platform. A modular electronic system is presented that is characterized by a plug and play approach to control scalability. This is complemented by a software architecture that has been developed with a focus on hardware abstraction for the management of an augmented mechanical and electronic architecture. The implications of MRMs for RMSs are discussed and key inhibitors to industrial implementation are identified.  相似文献   

18.
Reconfigurable architectures that tightly integrate a standard CPU core with a field-programmable hardware structure have recently been receiving increased attention. The design of such a hybrid reconfigurable processor involves a multitude of design decisions regarding the field-programmable structure as well as its system integration with the CPU core. Determining the impact of these design decisions on the overall system performance is a challenging task. In this paper, we first present a framework for the cycle-accurate performance evaluation of hybrid reconfigurable processors on the system level. Then, we discuss a reconfigurable processor for data-streaming applications, which attaches a coarse-grained reconfigurable unit to the coprocessor interface of a standard embedded CPU core. By means of a case study we evaluate the system-level impact of certain design features for the reconfigurable unit, such as multiple contexts, register replication, and hardware context scheduling. The results illustrate that a system-level evaluation framework is of paramount importance for studying the architectural trade-offs and optimizing design parameters for reconfigurable processors.  相似文献   

19.
To address the problem of how to identify the best time to implement reconfiguration for the reconfigurable manufacturing system (RMS), a dynamic complexity-based RMS reconfiguration point decision method is proposed. This method first identifies factors that affect RMS dynamic complexity (including both positive and negative complexity) at the machine tool and manufacturing cell levels. Next, based on information entropy theory, a quantitative model for RMS dynamic complexity is created, which is solved via state probability analysis for processing capability and the processing function. This model is combined with cusp catastrophe theory to establish an RMS reconfiguration decision model. Both positive and negative complexity are control variables for cusp catastrophe. Cusp catastrophe’s state condition is used to identify RMS state catastrophe at the final stage of production. This catastrophe point is the RMS reconfiguration point. Finally, the case study result shows that this method can effectively identify the RMS state catastrophe moment so that system reconfiguration is implemented promptly to improve RMS’s responsiveness to the market.  相似文献   

20.
Trends and perspectives in flexible and reconfigurable manufacturing systems   总被引:25,自引:3,他引:25  
To better understand future needs in manufacturing and their enabling technologies, a survey of experts in manufacturing has been conducted. The survey instrument (i.e., questionnaire) tries to assess the experience to date with the use of flexible manufacturing systems (FMS) and to examine the potential roles and enabling technologies for reconfigurable manufacturing systems (RMS). The results show that two-thirds of respondents stated that FMSs are not living up to their full potential, and well over half reported purchasing FMS with excess capacity (which was eventually used) and excess features (which in many cases were not eventually used). They identified a variety of problems associated with FMS, including training, reconfigurability, reliability and maintenance, software and communications, and initial cost. However, despite these issues, nearly 75% of respondent expressed their desire to purchase additional, or expand existing FMSs. The experts agreed that RMS (which can provide exactly the capacity and functionality needed, exactly when needed) is a desirable next step in the evolution of production systems. The key enabling technologies for RMS were identified as modular machines, open-architecture controls, high-speed machining, and methods, training and education for the operation of manufacturing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号