首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
运用三点弯曲试验研究和数值模拟的方法对新型材料碳纤维/PMI泡沫夹芯复合材料在高温湿热的弯曲性能以及损伤扩展进行了分析。研究结果表明:复合材料在高温湿热下的弯曲破坏载荷误差为9.13‰,预测了复合材料在湿热环境下的最大破坏载荷和破坏趋势。同时发现复合材料在湿热环境下的破坏机制:夹芯结构首先发生芯层压缩失效,然后才是剪切失效,结构最后的破坏是由剪切失效引起的,损伤扩展过程与试验保持一致。  相似文献   

2.
建立复合材料蜂窝夹芯修补结构的渐进损伤分析模型,研究修补后蜂窝夹芯结构在弯曲载荷作用下的极限承载能力及损伤破坏模式,并进一步研究修补结构弯曲性能与温度的相关性。通过编写VUMAT子程序,设置补片以及蜂窝损伤板的失效准则及刚度退化模式,选用Cohesive单元以模拟修补结构中胶层的损伤状况,完成复合材料蜂窝夹芯修补结构的渐进损伤分析。研究结果表明:结构弯曲承载能力和胶层的粘结能力受温度影响较大,结构弯曲承载强度随温度的升高而减小,且脱粘失效会破坏结构的完整性;蜂窝夹芯结构面板基体损伤首先发生在90°方向铺层处,纤维基体剪切损伤首先发生在面板0°铺层处,并沿垂直于施载方向扩展至自由边界。  相似文献   

3.
为研究平纹编织面板蜂窝夹芯结构的侧向压缩性能,将蜂窝夹芯结构失效分为面板失效、蜂窝芯失效和胶层失效,基于渐进损伤分析方法建立蜂窝夹芯结构侧向压缩的损伤分析模型,对平纹编织面板蜂窝夹芯结构进行侧向压缩失效预测,与侧压性能试验结果相比,破坏强度非常吻合。结果表明,建立的侧向压缩损伤分析模型能够模拟平纹编织面板蜂窝夹芯结构侧向压缩的损伤起始、损伤扩展和最终破坏,并最终预测其侧压破坏强度。  相似文献   

4.
针对夹芯结构经常出现的三种损伤方式:单面板损伤、单面板和蜂窝损伤以及穿透性损伤,利用真空袋压工艺,采用高强玻璃布补片和Nomex蜂窝芯作为修补材料,通过复合材料胶接与挖补修复工艺对损伤结构进行修复,主要探讨了修复前后不同损伤孔径对其弯曲性能的影响。结果表明,三种损伤方式对蜂窝夹芯结构的最大载荷和弯曲刚度都有很大影响;三种损伤方式的夹芯结构的最大载荷和弯曲刚度都随着损伤孔径的增大而降低;用复合材料胶接与挖补工艺对三种损伤方式的夹芯结构进行修复,能大大提高受损结构的弯曲性能;修复后的最大弯曲载荷达到完好夹芯结构的80%以上,修复后的弯曲刚度达到完好夹芯结构的85%以上。  相似文献   

5.
为分析含脱粘缺陷复合材料夹层结构侧压破坏载荷与破坏模式,采用损伤起始判据和损伤演化准则模拟面板与胶层的损伤及破坏过程,建立了考虑材料失效的三维渐进损伤分析模型。针对两种典型复合材料夹层结构,基于所建立的模型完成了破坏载荷预估和破坏模式分析,并将有限元分析与试验结果进行了对比。结果表明:面板较弱时,中部含圆形脱粘缺陷夹层结构侧压破坏模式通常为材料失效压缩破坏,随着载荷的增加,面板中部及脱粘区域周围发生损伤并沿板宽度方向向两侧扩展,直至材料完全损伤发生破坏;面板较强时,侧压破坏模式通常为整体失稳破坏,屈曲后结构基本不再具有继续承载的能力而迅速发生破坏。分析结果破坏载荷预估值与试验吻合较好,破坏模式与试验结果一致。  相似文献   

6.
为研究褶皱缺陷对玻璃纤维增强树脂基复合材料层合板拉伸性能的影响,采用Abaqus有限元软件,结合USDFLD子程序,建立含褶皱缺陷的玻璃纤维增强复合材料层合板渐进失效分析模型。通过数值仿真分析方法对含褶皱缺陷层合板在拉伸载荷作用下的强度退化和渐进失效过程进行研究,分析褶皱高宽比对层合板拉伸性能的影响。结果表明:拉伸强度预测值以及损伤初始位置与文献中实验结果吻合较好,验证了建立的仿真分析模型;随着褶皱高宽比的增加,拉伸失效载荷和强度显著降低;在拉伸载荷作用下,在褶皱变形区域与富树脂区域相接的铺层位置存在应力集中;层合板损伤由富树脂区域逐渐向褶皱变形区域扩展,最终在褶皱变形区域完全失效;受褶皱影响,层合板在拉伸过程中发生弯曲变形,在线弹性阶段,相同载荷条件下变形随着褶皱高宽比的增加而增加。  相似文献   

7.
为研究脱粘对平纹编织面板蜂窝夹芯结构侧压性能的影响,采用ABAQUS/Explicit有限元分析平台,结合VUMAT子程序,建立基于渐进损伤失效理论的有限元分析模型。开展无损伤和三种不同直径脱粘的平纹编织面板蜂窝夹芯结构侧压性能试验,并将结果与有限元分析结果进行对照。研究表明:试验与有限元仿真得到的失效载荷和破坏模式吻合很好,验证了所建立有限元模型的正确性;无损伤和含不同直径脱粘的平纹编织面板蜂窝夹芯结构在侧压作用下的破坏模式均为面板屈曲、压缩断裂以及蜂窝芯子的压缩破坏;脱粘对平纹编织面板蜂窝夹芯结构侧压承载能力的影响较小,面板是侧向压缩的主要受力部分;随着脱粘直径增大,载荷位移曲线波动更剧烈且波动频次更高;胶层损伤主要发生在临近脱粘的较小区域,对结构整体性能影响很小;面板的损伤从自由边沿垂直于承载力的方向扩展,直至断裂。  相似文献   

8.
为了改善三维中空复合材料结构微波固化成型的固化均匀性,提出了添加外部导热附加模具和内部微波吸收剂两种不同的方法。通过试验研究了附加模具的材料、厚度以及微波吸收剂种类和含量对三维中空复合材料结构力学性能的影响。结果表明,结构的平压失效模式包括芯柱失稳和压溃,剪切失效模式为芯材剪切失效和界面脱粘,短梁弯曲的失效模式为面板/芯材界面的脱粘后屈曲破坏。相比于未添加附加模具,AlN和Al_2O_3陶瓷均可以提高结构的力学性能,但AlN的增强效果更显著。AlN模具厚度的增加不利于结构的力学性能,模具厚度从0.5 mm增加到1.5 mm时,结构的平压、剪切和芯材剪切强度均随之降低。微波吸收剂的添加均可提高中空结构的力学性能,其中剪切和芯材剪切强度随着石墨含量的增加而增加,平压强度随着石墨含量的增加先增加后降低,而Fe_3O_4含量变化则对结构力学性能的影响不显著。  相似文献   

9.
通过四点弯曲试验和落锤冲击试验,研究了复合材料层合曲梁冲击前后四点弯曲强度及其破坏模式。不仅通过超声C扫描分析了不同内径复合材料层合曲梁试件冲击后的损伤特征,而且分析了冲击损伤对层合曲梁强度及层间最大应力的影响;同时,通过数字散斑相关方法得到复合材料层合曲梁在四点弯曲载荷作用下的变形场以及失效模式。研究结果将为复合材料层合曲梁在飞行器结构中的应用提供有价值的实验依据。  相似文献   

10.
对玻璃纤维2维平纹编织复合材料在6个不同温度下的弯曲性能进行了实验测试,研究了温度对编织复合材料层合板的载荷-挠度曲线、弯曲强度、弯曲模量和失效模式的影响。结果表明:在三点弯曲载荷作用下,2维编织复合材料层合板跨中发生了局部纤维束屈曲失效和基体的开裂与分层失效。温度对玻璃纤维复合材料的力学性能和失效形式产生了重要影响。在高温环境中玻璃纤维2维平纹编织复合材料的弯曲力学性能迅速下降,当试验温度从20℃升高至115℃时,层合板的弯曲强度和模量分别下降了91%和66%。随着温度的升高,2维编织复合材料层合板的弯曲失效变形行为也发生了转变,逐渐由脆性破坏转变为塑性变形失效。  相似文献   

11.
EPP泡沫填充对铝蜂窝压缩性能的影响研究   总被引:2,自引:0,他引:2  
采用准静态轴向压缩实验和有限元仿真相结合的方法,对EPP泡沫(聚丙烯塑料发泡材料)填充对铝蜂窝结构压缩性能的影响开展了研究。实验发现,相对空铝蜂窝,EPP泡沫填充铝蜂窝结构的峰值力、平均抗压强度和吸收能量分别提高了1.9%~43.33%、46.59%~179.53%和46.26%~179.04%。并且相对空铝蜂窝与单独EPP泡沫之和,泡沫填充结构的平均抗压强度和总吸能分别提高了2%~23.5%和3.9%~23.3%。此外,采用Ls-dyna软件对EPP泡沫填充铝蜂窝的破坏过程进行了仿真,发现EPP泡沫填充可以有效抵抗蜂窝壁变形,并且获得了与实验较吻合的破坏过程和位移曲线。研究表明,利用EPP泡沫填充铝蜂窝,能有效改善铝蜂窝结构的轴向压缩性能。  相似文献   

12.
采用动态冲击实验方法研究了EPP(聚丙烯塑料发泡材料)泡沫填充对铝蜂窝结构动态冲击性能的影响。研究发现:在相同的冲击速度下,相对空铝蜂窝,EPP泡沫填充铝蜂窝结构的初始峰值应力和平均应力分别提高了32.86%~68.57%和15.00%~72.50%,比吸能下降了33.54%~66.56%;在相同的泡沫密度下,填充结构的初始峰值应力、平均应力和比吸能值均随着冲击速度的增加而增加,2.6 m/s和3.2 m/s时的比吸能比2 m/s时的比吸能3.26 J/g增加了68.10%~152.45%;对比准静态压缩实验,动态冲击中的初始峰值应力提升了1.72%~12.04%,平均应力下降了6.51%~18.84%,比吸能下降了31.50%~65.50%。研究表明,利用EPP泡沫填充铝蜂窝,能改善铝蜂窝结构的轴向动态冲击性能。  相似文献   

13.
通过轴心拉伸试验考察了棒状、片状(宽、窄)、波浪形这几种异形微型聚丙烯腈(PAN)基碳纤维复合材料对混凝土力学性能的影响。实验表明:碳纤维复合材料的加入可以有效、较大程度地提高混凝土的抗拉强度、强度和抗折强度。其中,与基准混凝土相比,异形微型碳纤维增强混凝土的抗拉强度最大可提高64%;增强混凝土的标号最大可从C40~C45级增加为C60级;随着复合材料比表面积和的增加,增强混凝土的强度和抗折强度最大可分别提高45.6%和50.6%;此外,在相同尺寸及比表面积下,波浪形碳纤维混凝土比片状碳纤维混凝土更难被折断。以上均证明PAN基碳纤维复合材料对混凝土有较好的增韧作用。  相似文献   

14.
计操  周国发 《中国塑料》2021,35(3):59-66
针对金属基聚合物复合材料易诱发界面剥离损伤失效的共性问题,研究了通过多层复合组装注射成型,在聚合物复合层与粘接层界面形成短纤维桥接,实现复合界面强化。基于内聚力剥离损伤模型,构建了短纤维桥接强化界面剥离裂纹扩展断裂失效过程的模拟仿真技术,模拟建立了界面剥离裂纹快速失稳扩展断裂损伤失效临界载荷—桥接纤维特性—界面剥离断裂韧性(损伤启裂应力T0和临界应变能释放率Gc)的协同关联理论,诠释了短纤维桥接界面强化机理,提出了预防短纤维桥接强化界面诱发剥离裂纹快速失稳扩展失效的设计准则。结果表明,当桥接纤维密度为20根/mm2,可使其临界载荷增加55.9 %,临界载荷受控于桥接纤维密度、初始预裂纹面积、损伤启裂应力和临界应变能释放率,且与桥接纤维密度、损伤启裂应力和临界应变能释放率呈正关联关系,而与初始预裂纹面积呈负关联关系。  相似文献   

15.
建立了预测含初始脱粘缺陷复合材料加筋壁板渐进压溃响应的数值分析模型。该模型综合考虑了复合材料层合板的纤维失效、基体失效和纤维-基体剪切失效三种典型的面内损伤模式,并通过编写用户自定义材料子程序VUMAT实现面内失效类型的判断和相应材料性能的折减;在壁板和筋条连接界面应用虚裂纹闭合技术(VCCT)计算层间裂纹前缘的应变能释放率,并结合B-K混合模式准则控制缺陷的起裂以模拟脱粘的扩展演化过程;采用显式动力学方法准静态分析结构在压缩载荷下的屈曲、后屈曲直至最终压溃的响应过程。数值分析结果与文献试验、数值结果吻合良好,验证了模型的合理性和有效性,并详细研究了复合材料脱粘加筋壁板的损伤演化过程和渐进压溃行为。  相似文献   

16.
结合复合材料经典层合板理论和折板理论建立一种适用于碳纤维复合材料箱形梁初始破坏载荷的理论计算方法。应用该方法分别对[0_4/±45/0_4]、[0_2/±45/0_2/±45/0_2]和[±45/0_2/±45/0_2/±45]三种铺层方案的箱形梁进行初始破坏载荷计算,得出其初始破坏载荷值。同时使用DNS100电子万能试验机对复合材料箱形梁三种铺层方案的试件进行三点弯曲实验。比较复合材料箱形梁初始破坏载荷的理论计算值与实验值,三种铺层方案的箱形梁理论计算误差小于4%。研究结果表明:本文建立的复合材料箱形梁初始破坏载荷的理论计算方法是正确的;复合材料箱形梁的0°铺层比例越高,箱形梁的初始破坏载荷越高。  相似文献   

17.
GFRP粘接修复损伤铝板,粘接前对损伤铝合金表面采用不同浓度的硅烷偶联剂KH550、KH560进行处理,以未经偶联剂处理的铝板为对照组,通过拉伸试验与湿热试验研究偶联剂处理对修复效果的影响。试验结果表明:两种偶联剂KH550、KH560处理铝合金效果相当,铝板表面经1%~2%浓度的偶联剂溶液处理不仅有较高的初始强度,而且耐湿热性能也得到提高;湿热处理使不同表面处理的修理试样力学性能发生明显下降,同时,湿热环境对铝板-胶层之间粘接界面的渗透破坏要强于其对胶层-GFRP之间的界面破坏,铝板-胶层界面粘接强度的下降是引起试样性能下降的主要原因。  相似文献   

18.
研究了树脂基体模量、缠绕角和厚度对碳纤维复合材料缠绕制品抗外压性能的影响。实验结果表明:采用MNA共混PMDA固化环氧树脂并调整PMDA含量可以有效改变树脂模量,随着PMDA含量的增加,树脂模量提高。当PMDA含量仅为MNA的5%时,树脂模量从3.71 GPa增加到4.18 GPa,提高了13%;当PMDA含量为MNA的10%时,模量达到最大值,为4.61 GPa,提高了24%。随着基体模量增加,单向CFRP的压缩强度、剪切强度和环刚度均先增加后减少。当基体模量为4.18GPa时,CFRP的压缩强度和剪切强度均达到最大值,分别为655 MPa和71.6 MPa,提高了16%和12%。此时,缠绕管环刚度达到最大值,为277 k N/m~2,提高了87%;同时增加缠绕角和厚度能够提高缠绕管的抗失稳能力。  相似文献   

19.
对含预置孔缺陷的玻璃纤维-铝合金层合板修补前后进行了拉伸试验,讨论了拉伸过程中载荷随拉伸位移的变化趋势,并分析了补强片对于材料拉伸强度的影响及断裂破坏形式。结果表明,修补前后的玻璃纤维-铝合金层合板在拉伸过程中均经历了屈服阶段,修补后的层合板表现出了更明显的屈服现象,且载荷在破坏前出现了较大波动,孔直径为6 mm、10 mm、12 mm的缺陷试样在补强后的极限强度修复率分别为17.7%、13.2%、20.6%,补强片使层合板在拉伸破坏后在断裂位置呈现双扇形损伤,补强片的破坏为胶膜的剪切破坏,破坏界面位于铝合金表面。  相似文献   

20.
采用真空辅助RTM成型方法制备了0.5%碳纳米纤维(CNF)玻纤/环氧(GF/EP)复合材料,并对其一维饱和渗透率、不同温度下的力学性能、耐固体粒子冲蚀磨损性能进行了测试和研究分析。实验结果表明,加入0.5%CNF之后,平行于纤维方向的饱和渗透率降低了2~6倍,垂直于纤维方向的饱和渗透率降低了2~5倍;在孔隙率小于0.44时,两个方向的饱和渗透率差别不大,均接近于零;0.5%CNF的加入对纯EP及垂直于纤维方向复合材料的机械性能和耐固体粒子冲蚀磨损性能影响较小,在平行于纤维方向上复合材料的力学性能和耐固体粒子冲蚀磨损性能均有提高;在不同温度下,0.5%CNF的加入使垂直纤维方向上复合材料拉伸强度的稳定性得到提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号