首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为了研究碳纤维复合材料层合板对球形弹的抗冲击特性,利用一级气炮发射弹体对层合板进行高速冲击试验,通过高速摄像机记录弹靶冲击过程。利用C扫成像及显微镜检测层合板的损伤区域,分析不同速度弹体冲击下层合板的能量吸收率、损伤形式及能量吸收机制的变化规律。研究结果表明:弹体剩余速度随着初始速度的增加先减小后增加,而弹体剩余速度变化率先增大后减小。当弹体初始速度比较低时,层合板主要通过分层吸收弹体动能。随着弹体初始速度增加,层合板的冲击响应时间减小,分层面积下降,纤维断裂成为吸能的主要方式,层合板能量吸收量迅速下降。  相似文献   

2.
为研究304不锈钢网对玻璃纤维编织复合材料低速冲击损伤特性的影响,利用落锤试验机分别对2 mm厚的不含、含一层和含三层304不锈钢网的玻璃纤维编织复合材料板进行5 J、20 J、40 J和60 J能量下的冲击实验,从层合板载荷峰值、最大凹陷位移、能量吸收和损伤机理等方面,分析不锈钢网对层合板抗冲击性能的影响规律。研究结果表明,当冲击能量未达到层合板击穿能量阈值前,载荷峰值和最大凹陷位移随着冲击能量的增大而增大。三层不锈钢网的加入使得层合板在较小凹陷位移时就能达到最大载荷,具有良好的抗冲击性能。层合板损伤形状呈十字形,损伤程度沿着厚度方向逐渐加深,背面中心点处损伤最为严重。当冲击能量超过层合板能量阈值时,中心区域损伤呈花瓣开裂状,主要损伤模式为纤维拉伸断裂和基体破碎、金属丝拉伸断裂。  相似文献   

3.
邢金宝  赵娟  孙杰 《合成纤维》2023,(5):64-70+75
通过对制备的环氧基碳纤维增强复合材料(CFRP)层合板进行低速冲击剩余压缩强度试验研究,分析了CFRP层合板的冲击后剩余性能,然后观察CFRP层合板的冲击凹坑回弹现象,分析CFRP层合板的黏弹性能,深入分析冲击过程中能量的吸收与转化。结果表明:当冲击能量越来越大时,CFRP层合板的损伤越来越严重,其剩余压缩强度越来越低;从凹坑边缘到凹坑中心处,CFRP层合板的应变能密度逐渐增大;凹坑回弹部位位于凹坑中心区域附近,呈现局部突起状,最终凹坑剖面近似于不规则“W”形。  相似文献   

4.
复合材料层合板的损伤容限是复合材料结构设计的关键因素。针对碳纤维增强复合材料(CFRP)层合板低速冲击损伤和压缩破坏问题,本文基于连续损伤力学和粘结单元模型,在ABAQUS中对两种不同冲击能量下的层合板进行了低速冲击和冲击后压缩仿真分析,并对层内和层间损伤进行了研究,分析了层合板的冲击损伤与压缩失效行为,通过与试验结果进行对比,验证了该模型的有效性。研究结果表明:冲击损伤对层合板的剩余压缩强度有着重要影响,试件的破坏开始于冲击损伤区域,并逐渐扩展到层合板的边缘,压缩力快速下降,层合板最终失效。  相似文献   

5.
本文工作是通过对含不同大小分层层合板结构分析,讨论拉伸和剪切修复刚度对含层间分层损伤复合材料层合板振动特性的影响.基于修补分层损伤结构变形特点,将含损层合板的基板、上子板和下子板采用Mindlin板单元离散,而损伤区修复效应以虚拟连接单元模拟,建立相应的有限元分析模型和计算方法.通过对含损层合板的振动分析,讨论并验证本文提出的修复分层损伤模拟连接单元模型的可能性和正确性,依据拉抻和剪切修复刚度对含损层合板固有频率的分别影响与综合影响,得到对分层损伤复合材料层合板修补的指导性原则.  相似文献   

6.
芳纶纤维因具有轻质高强、良好耐疲劳性和化学稳定性等优良性能,逐渐成为重要的国防军工材料。选用芳纶单向布和平纹织物设计并制备了不同结构参数的芳纶纤维复合材料层合板,采用落锤冲击试验仪在不同的冲击能量下进行低速冲击实验,根据最大接触力、能量吸收能力和凹陷深度评估层板的抗冲击性能。结果表明,[0/45/-45/90]s单向层合板的接触载荷峰值高于[0/90]s单向层合板和平纹织物层合板,并在高能量冲击下具有优异的能量吸收能力,其损伤区域最小。破坏形貌表明,单向复合材料层合板损伤以分层为主,而平纹织物复合材料层合板以整体塑性大变形为主,这为芳纶纤维复合材料的优化设计及防护应用提供一定的理论指导。  相似文献   

7.
对特定铺层的5224/CF3052平纹织物复合材料层合板进行了低速冲击和冲击后拉伸、压缩及弯曲试验。探讨了层合板在冲击试验过程中的损伤过程、特征和机理;分析了凹坑深度对层合板冲击后拉伸、压缩和弯曲强度的影响规律。结果表明:冲击后拉伸、压缩及弯曲强度降幅分别为60.9%、50.4%及28.4%,冲击后拉伸强度降幅最大,应引起注意。与冲击后压缩试验结果类似,凹坑深度与冲击后拉伸、弯曲剩余强度关系曲线存在拐点现象。  相似文献   

8.
本文针对CFR平纹机织材料层合板低速冲击及冲击后压缩(CAI)响应和损伤问题,提出了一种渐进均匀化多尺度分析方法。基于渐进均匀化方法分别算出微观纤维束和介观子胞的等效强度和刚度,在这个基础上,采用三维Hashin失效准则以及连续损伤力学模型来模拟CFR平纹机织材料层合板的损伤起始和演化,用内聚力模型来模拟层间损伤。研究结果表明:CFR平纹机织材料低速冲击后压缩的仿真结果和试验结果吻合较好,验证了渐进均匀化多尺度方法的可靠性和准确性;随着冲击能量的递增,层合板的剩余压缩强度呈非线性下降。纤维损伤和基体损伤在低速冲击载荷下,随着冲击能量的增加,冲击损伤面积增大。而CAI行为则相反,压缩损伤面积随着冲击能量的增大而减小。  相似文献   

9.
玻璃纤维复合材料层合板冲击后的压缩强度   总被引:1,自引:0,他引:1  
对不同厚度的二维编织环氧玻璃纤维层合板进行落锤冲击试验及冲击后压缩破坏试验,以研究低速冲击对复合材料层合板剩余压缩强度(CAI)的影响。用透光描影及热揭层方法对冲击损伤形式进行描述。讨论了损伤宽度、损伤面积与冲击能量及剩余压缩强度、模量间的关系,并建立有限元模型,采用开口等效及软化夹杂等分析方法对材料的冲击后压缩强度值进行估算。  相似文献   

10.
为了研究高强玻璃纤维板抗高速破片侵彻性能,开展了弹道试验,探讨了破片入射速度、靶板厚度对高强玻璃纤维板抗侵彻性能的影响,通过对弹道试验结果分析,指出了高强玻璃纤维板的变形失效模式、吸能特性和抗侵彻机理。结果表明:破片在侵彻高强玻璃纤维板过程中可视为刚体,高强玻璃纤维板迎弹面破坏模式为纤维剪切破坏并伴随纤维反向喷出,迎弹面弹孔附近区域出现基体碎裂、纤维脱粘;背弹面破坏模式为纤维拉伸断裂,背弹面损伤区域远大于迎弹面损伤区域;高强玻璃纤维板单位面密度吸能随着破片侵彻速度增加呈线性增加,在试验速度范围内,得出了立方体破片侵彻不同厚度靶板入射速度与剩余速度、入射速度与靶板单位面密度吸能关系。  相似文献   

11.
A novel multi-layered composite armor system is proposed for ballistic protection in the present study. The composite armor is composed of a ductile metal front, followed by a ceramic/UHMWPE laminate composite as the intermediate layer, and a ductile metal back layer. The ballistic performance of the composite armor against flat-nosed projectile was investigated experimentally and numerically. Experimental results show that the proposed composite armor exhibited several failure modes, including ductile hole enlargement of metallic face sheets, fragmentations and cracks of the ceramic layer, delamination, fiber fracture and bulge deformation of UHMWPE laminates. Three-dimensional numerical model was established to analyze the evolution of the whole ballistic response, and to discuss the effect of the ceramic layer placement and the mass allocation between the ceramic layer and UHMWPE laminate layer on the ballistic performance. Simulation results reveal the evident reduction in residual velocity that results from the optimal placement of the ceramic layer. Good balance among the contributions of the target components can be achieved to maximize the total energy absorption of composite armor by optimizing the ceramic placement strategy. The projectile residual velocity and the total energy absorption are insensitive to the mass ratio of ceramic layer to UHMWPE laminate layer within a certain range. Under the condition of a higher mass ratio, the specific energy absorption of UHMWPE layer can be significantly improved due to the full development of its bulging deformation. Consequently, it would benefit the energy absorption capability of the composite armor.  相似文献   

12.
《Polymer Composites》2017,38(11):2603-2608
In this paper, the experimental behavior of grid cylindrical composite structures, which are used widely in engineering structures, under ballistic impact is investigated. For this purpose, some grid cylindrical composite specimens were manufactured by the filament winding process and perforated by projectile using the ballistic gas gun. Incident impact velocity and exit velocities of projectile were recorded in each test. The results show that the presence of the ribs prevents pervading of damaged area of one cell to its adjacent cells. The structure behaves differently against projectile with velocity near ballistic limit and higher velocities. The results demonstrated that, by getting close to the ribs location, ballistic limit velocity was increased. However, due to reduction in energy absorption mechanisms in grid composite structures which are impacted in higher velocity than ballistic limit, projectile was exited of grid samples at higher velocity than unstiffened composite shells. Also, investigation of delamination in composite shell and ribs, debonding between ribs and shell (or separation of ribs and shell), residual velocity of projectile, damaged area of the grid specimens and the effects of curvature in two different velocities are presented and the results are discussed. POLYM. COMPOS., 38:2603–2608, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
Aramid fiber/glass fiber hybrid composites were prepared to examine the compressive performance of impacted composites. The effect of stacking sequence and surface treatment on compression after impact (CAI) performance of three‐layer hybrid composites was investigated with respect to delamination area. As the impact velocity increased, the laminates exhibited a significant reduction of compressive strength owing to larger delamination area within laminate. The surface treatment aramid fiber reduced the delamination area and enhanced the resistance to buckling. The strength reduction of laminate AAA was considerable because of wide delaminated region, whereas the residual strength of laminate GGG was not affected by impact energy because the laminate absorbed most of impact energy through formation of fiber cracks rather than delamination. Considering stacking sequence, the laminate GAG and GAA exhibited an energy threshold due to insensitivity to impact damage. As a result, the residual performance of composite was primarily dominated by delamination extent rather than fiber cracks.  相似文献   

14.
This work evaluates the behavior of sandwich and spaced plates subjected to high‐velocity impacts. The sandwich structures were made of glass/polyester face‐sheet and a PVC foam core. The spaced plates were made of two plates of the same material of the sandwich face‐sheet at a distance equal to the core thickness. The residual velocity, the ballistic limit, and the damage area were selected to compare the response of both structures. The residual velocity and ballistic limit was very similar in both cases. Nevertheless, the damage area of sandwich structures and spaced plates differed due to the dissimilar properties between the sandwich core and the air inside of the spaced plates. An analytical model, based on energy criteria, was applied to estimate the residual velocity of the projectile, the absorbed energy by each face‐sheet, and the ballistic limit in the spaced plates. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

15.
The effect of glass-resin interface strength on the impact energy of glass fabric (style 181) reinforced epoxy and polyester laminates has been determined. The interface strength was altered by surface treatment of the fabrics with silane coupling agents and with a silicone fluid mold release and the interlaminar shear strength was determined as a means to evaluate the interface strength. An instrumented Charpy impact test was used on unnotehed specimens and thus both initiation and propagation energies could be determined as well as dynamic strength. It was found that the initiation energy for both polyester and epoxy laminates increased with increasing interlaminar shear strength, The propagation energy and thus the total energy for polyester laminates displays a minimum at a critical value of interlaminar shear strength (ILSS). Below this critical value, the total impact energy increases with decreasing shear strength and the dominant energy absorption mode appears to be delamination. Above the critical value, the impact energy increases with increasing values of ILSS and the fracture mode is predominantly one of fiber failure. In all cases, even with mold release applied, the shear strength of epoxy laminates was above this critical value and-thus the total impact energy increases with Increasing values of ILSS. The maximum energy absorbed for the epoxy laminate and the polyester laminate is nearly identical. However, the maximum for the epoxy laminate occurs when the shear strength is maximized while for the polyester laminate the shear strength must be minimized. For the polyester laminate when delamination is predominant, it was found that the glass surface treatment affects the amount of delamination as opposed to the specific value of delamination fracture work.  相似文献   

16.
Ballistic impact performance of aramid fiber fabric‐epoxy and aramid fiber fabric‐polypropylene (PP)‐based composite laminates has been studied against 7.62 mm armor piercing projectiles. Twaron® was used as aramid fiber fabric in the composites. Role of matrix on the damage pattern has been investigated by impacting the composites of different thickness with projectiles having different strike velocity (SV). Ballistic limit (BL) for each composite has been estimated through correlation of SV and residual velocity (RV) of the projectile by usual V50 method. Ballistic limit was found to vary linearly with composite laminate thickness. Twaron®‐PP composites exhibited higher ballistic limit compared toequivalent thickness of Twaron®‐epoxy composites. Epoxy‐based composites exhibited localized damage mode compared to a global mode of failure in PP‐based composites. Scanning electron microscopy revealed that fibers in Twaron®‐epoxy composites failed largely by shear while tensile mode of failure was observed for Twaron®–PP composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
In this study, high-performance polyethylene (HPPE) fiber-based needle punched nonwovens were interleaved in cross-plied woven carbon fabric/epoxy composite laminates to enhance their interlaminar and impact properties. The placement of needle punched nonwoven interleaves exhibited considerable enhancement in interlaminar shear strength (ILSS), impact damage tolerance, and compression after impact (CAI) strength of laminates as evidenced by higher interlaminar strength, less absorbed energy, higher elastic energy, reduced damage degree, reduced out-of-plane deformation, higher load-bearing capacity, and higher residual compressive strength as compared to control sample. In particular, the composite laminate with placement of interleaves in alternating sequence between carbon plies resulted in 205.76% increase in ILSS and 129, 103 and 85% increase in CAI at 10, 25, and 40 J impact energy, respectively. Moreover, damaged surface area and out-of-plane deformation reduced to 38.75% and 62.5%, respectively for the same specimen impacted at 40 J energy. These results suggest that the HPPE fiber-based needle punched nonwoven interleaving can be adopted as a simple and low-cost approach compared with other interleaving techniques, to enhance the resistance to delamination, impact performance, and damage tolerance of traditional structural laminates.  相似文献   

18.
三维正交机织复合材料弹道冲击实验及破坏模式   总被引:4,自引:3,他引:1  
本文用钢芯弹对三维机织复合材料作弹道冲击测试。得到了弹体的入射速度和剩余速度,比较了常见几种材料的弹道性能评价参数的差异,并考察侵彻破坏模式和靶体最后的损伤破坏形态。在300-800m/s冲击速度范围下观测了材料的冲击破坏形态,发现机织复合材料受弹面和子弹出射面破坏形态不一样,受弹面主要是以纤维的压缩、剪切破坏以及基体开裂为主,出射面以纤维的拉伸、厚度方向的纱线断裂为主要破坏模式。通过对破坏模式和形态的分析,可以帮助建立更加准确的破坏准则,从而在设计抗弹材料时起到一定的作用。  相似文献   

19.
ABSTRACT One‐layer and two‐layer hybrid composites were fabricated using open leaky mold method in order to examine the effect of structural geometry on impact performance of aramid fiber/polyethylene (PE) fiber hybrid composites. The impact property of interply hybrid composites was compared with that of intraply hybrid composites with respect to impact mechanism and deformation extent. In addition, the delamination area of two hybrid composites was considered for correlation with impact properties. In one‐layer composites, two intraply hybrids exhibited the different characteristics in impact mechanism and deformation shape. The laminate T absorbed most of impact energy through large deformation of PE fibers with an elliptical damage shape. On the other hand, the laminate R showed the higher impact energy because both aramid and PE fibers contributed to the absorption of impact energy with a round damage zone. In case of two‐layer composites, interply hybrid composites exhibited higher impact energy than intraply hybrid composites. The interply hybrids absorbed the impact energy through deformation process such as fiber pullout and delamination, and impact energy was well correlated to delamination area. The impact energy of intraply hybrid composites was primarily dominated by full exertion of deformation in PE fiber rather than delamination process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 952–959, 2000  相似文献   

20.
双轴向经编针织复合材料的弹道侵彻破坏   总被引:2,自引:2,他引:0  
通过真空辅助树脂传递模压法(VARTM)制造双轴向经编针织复合材料。在350~750m/s冲击速度范围内对复合材料作弹道冲击测试,得到弹体的入射速度、剩余速度及动能损失,弹体的剩余速度与入射速发近似满足线性关系,动能损失随弹速的增加呈现先上升后下降的状态。考察复合材料靶体的弹道侵彻破坏损伤形态,发现复合材料受弹面的破坏区域较子弹出射面的破坏区域小且破坏形态不同,由此揭示双轴向经编针织复合材料的弹道侵彻破坏模式与机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号