首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
汽车用高性能SMC复合材料   总被引:2,自引:1,他引:1  
本文主要从原材料配方和成型工艺两个方面探讨了如何降低SMC模塑料的收缩率、改善制品的表面质量,来制备具有低收缩率(〈0.05%)、A级表面质量及优良力学性能的高性能SMC复合材料。通过原材料的科学匹配,选择最佳配方,SMC片材生产工艺的严格控制(如树脂糊中水分和粘度的控制),优化SMC模压工艺参数(如选择合理的铺料方式、两段式压制、合理的加压时机等),压制出高档的SMC汽车制品。  相似文献   

2.
本文分别对无苯、低挥发环保型模压树脂S31804、S31828、通用型809树脂、制作的SMC片材及模压制品在不同条件下存放过程中有机物挥发性进行研究。结果表明:常温下环保型树脂VOC值小于50 ppm,环保型树脂有机物挥发量是通用型VOC值的0.5%以下;SMC片材:常温下,环保型片材有机物挥发量是通用片材挥发量的2.7%,在35℃时,环保型片材有机物挥发量是通用片材挥发量的7.4%;SMC制品:在常温下,环保型制品VOC残留量比通用型高出3倍,在60℃时,环保型制品VOC残留量比通用型高出1.9倍;环保型制品性能断裂伸长率比通用型高出41.2%,弯曲强度比通用型高出17.8%,冲击强度高出3.3%。  相似文献   

3.
聚酯预浸料复合SMC工艺及其应用   总被引:1,自引:0,他引:1  
对以SMC为基础,添加以不饱和聚酯预浸材料作为加强层,形成的复合SMC材料进行了研究,介绍了采用的工艺流程和成型方法;以0.4mm的无碱玻璃布作为加强层增强材料,制作预浸布,以1∶1的体积比与SMC材料复合,采用复合SMC工艺成型的制品机械性能与常规SMC和采用聚酯作为树脂基体的RTM制品性能比较,拉伸强度达到180MPa,弯曲强度达到262MPa,冲击强度达到246kJ/m2,性能优势明显。  相似文献   

4.
研究了不同改性方法对酚醛团状膜塑料(BMC)、酚醛片状膜塑料(SMC)、乙烯基SMC材料力学性能的影响,分析了树脂基与纤维相的改性作用机制,得到了三者中具有最佳力学性能的复合材料,并通过仿真分析验证了不同复合材料用于制造阀体的可行性。结果表明,3种材料的拉伸性能为乙烯基SMC>酚醛BMC>酚醛SMC,弯曲性能为酚醛BMC>乙烯基SMC>酚醛SMC,乙烯基SMC的综合力学性能最佳;成型温度为160 ℃、模压压力为9 MPa、保温时间为30 min时,乙烯基SMC的拉伸强度、拉伸模量、弯曲强度、弯曲模量分别达到148.26 MPa、4.50 GPa、92.33 MPa、2.39 GPa;阀体静力学分析结果表明,乙烯基SMC与酚醛BMC均满足阀体制造要求。  相似文献   

5.
介绍了不同直径玻璃纤维对BMC团料的影响,并系统研究了不同纤维直径对BMC弯曲强度、拉伸强度以及冲击强度等力学性能的影响。结果表明,随着纤维直径的增大,玻纤在树脂中的浸透速度变慢,在树脂糊中的粘度会增大,当玻璃纤维直径在13~15μm,对复合材料力学性能增强效果最显著。  相似文献   

6.
将碳纳米管(CNT)和空心玻璃微珠(HGS)添加到环氧树脂(EP)中,利用模压工艺制备碳纤维(CF)/EP复合材料。结果表明:同时添加CNT和HGS可以有效降低CF/EP复合材料的密度,改善复合材料的力学性能,提高复合材料的导热性能,且当CNT和HGS质量比为1∶4时,复合材料综合性能最优,与不添加CNT和HGS的CF/EP复合材料相比,该复合材料的密度下降了8.8%,弯曲强度和弯曲模量分别提高了22.0%和30.1%,拉伸强度提高了8.9%,导热系数提高了87.1%。  相似文献   

7.
采用多孔微珠为填料制备了不饱和聚酯低密度团状模塑料(BMC)。选取多孔微珠的粒径及掺量,短切玻璃纤维的长度及掺量为4因素,设计L16(44)正交试验,并结合示差扫描量热法(DSC)和扫描电镜(SEM)对复合体系的增强机理进行了研究。结果表明,制备轻质BMC材料的最佳条件为:多孔微珠的粒径<0.710 mm,掺量4%,短切玻纤长度6 mm,掺量30%,此时制得BMC材料密度为1.314 g/cm3,弯曲强度为81.50 MPa,满足国标GB/T 23641—2009对BMC弯曲强度的要求(≥80 MPa)。多孔微珠的蜂窝壁对树脂的固化起到了阻碍作用,固化时间延长,放热不完全,同时多孔微珠的填充使得树脂基体的应力分散不均,样品的表观密度和弯曲强度降低。  相似文献   

8.
本文主要对高光表面SMC进行了研究.采用正交实验设计法对影响SMC表面光泽度的主要影响因素LPA、MgO、CaCO3和模压温度进行了系统的探讨与分析,以SMC制品的表面光泽度和弯曲强度为参考值,得出了4因素对SMC制品表面光泽度的影响趋势曲线.综合表面光泽度和弯曲性能得到一组进一步优化的SMC配方,根据该配方所压制的SMC制品的表面光泽度可达到90,并具有较好的力学性能.  相似文献   

9.
对不同玻纤质量分数的LFT-PP粒料国标注塑样条,进行拉伸、弯曲、冲击等性能测试分析,结果表明:玻纤试样的拉伸强度、弯曲强度以及冲击强度均随玻纤质量分数的增加而提高;样品断裂延伸率随玻纤质量分数变化不明显,弯曲挠度随玻纤质量分数增加而减小;其中质量分数40%的玻纤试样拉伸强度达到145 MPa,弯曲强度高达170 MPa,简支梁缺口冲击强度为27 kJ/m2,表现出优异的力学性能.将质量分数40%玻纤的长纤粒料注塑成汽车翼子板制件,制品通过了汽车塑料制品各项测试并完成装配.  相似文献   

10.
为了探讨模压成型参数对于片状模塑料(SMC)材料模压制品综合力学性能的影响,将模压成型过程分为3个阶段,以3个阶段的压力与时间共6个参数作为影响因子,对制品的拉伸强度、弯曲强度与冲击强度进行测试,设计了正交试验,以制品的力学性能作为评价指标,采用极差分析法,分析讨论了各阶段工艺参数对SMC复合材料制品力学性能的影响,并结合成型过程中材料状态变化分析造成实验结果的原因,最终得到优化后的工艺参数。  相似文献   

11.
对一种适用于RTM工艺的低粘度双马树脂QY8911-Ⅳ进行了研究,考察了树脂体系的粘度特性和固化特性,并对不同后固化温度下的树脂固化物的耐热性、力学性能及吸水性等进行了全面考察。结果表明,该树脂体系具有粘度低(80℃为200mPa·s)、固化收缩小(1%)、耐热性好(T_g为260℃)、力学性能好(弯曲强度为170 MPa、冲击强度为20 kJ/m~2)和吸水率低(0.39%)等特点。选择合适的注射工艺和固化工艺,以此树脂为基体,采用RTM工艺,制备出了碳布增强的复合材料,并对其力学性能进行了测试,其弯曲强度和冲击强度分别为754 MPa和110.9 kJ/m~2。  相似文献   

12.
采用两种不同形式的混纤纱机织物为原料,利用层压成型的方法制备了连续玻璃纤维(GF)增强的聚丙烯(PP)板材。研究了层压温度、压力、保压时间和混纤纱机织物形式对层压板材的弯曲性能和层间剪切强度(ILSS)的影响。结果表明,当层压温度为230℃,层压压力为8.5 MPa,保压时间为30 min,降温过程冷却速度为0.5℃/min时,层压板材的力学性能最佳。弯曲强度和模量分别达到352.58 MPa、23.09 GPa,ILSS达到27.37 MPa。此时,纤维含量和空隙率分别为72.25%、2.03%。在最优工艺条件下制备的两种不同织物形式层压板材弯曲强度和弯曲模量以及ILSS:2/2斜纹织物平纹织物。两种织物层压板材的空隙率:2/2斜纹织物平纹织物。  相似文献   

13.
采用一种含醚键双马单体对双马来酰亚胺树脂进行改性,制备了一种适用于复合材料树脂转移模塑成型工艺(RTM)的高韧性双马来酰亚胺树脂基体,并研究了其流变特性、耐热性能、力学性能及其复合材料的力学性能。树脂体系的流变性能数据表明树脂在注射温度(100℃)下具有较长的适用期(~3 h),能够满足RTM成型的要求。树脂浇注体的拉伸强度为115 MPa,断裂延伸率为3.1%,弯曲强度为159 MPa,玻璃化转变温度为270℃,表明树脂具有较高的韧性和耐温等级。以本树脂体系作为基体制备得到的碳纤维增强复合材料具有较高的力学性能,同时在230℃下具有较高的力学性能保持率。  相似文献   

14.
双马来酰亚胺改性氰酸酯树脂及其复合材料   总被引:2,自引:0,他引:2  
制备了一种新型的双马来酰亚胺改性氰酸酯树脂以提高这类树脂的耐热性,力学性能及成型工艺性。对合成的树脂作了流变分析,对其玻纤复合材料进行了力学性能测试和热失重分析,结果表明,当双马树脂达到改性氰酸酯树脂的质量分数的37.5%时,新型改性氰酸酯树脂的5%热失重温度为432℃。改性氰酸酯基复合材料在常温条件下的拉伸强度为492.4 MPa,弯曲强度为526.3 MPa。在200℃时改性氰酸酯基复合材料的拉伸强度为357.3 MPa,弯曲强度为292.7 MPa。该树脂具有良好的加工性,耐热性,力学性能及高温力学保持性。  相似文献   

15.
废旧线路板粉料作为BMC填料的正交试验研究   总被引:1,自引:0,他引:1  
戎国林  刘学平 《当代化工》2009,38(4):329-331,351
将废旧线路板回收处理过程中得到的粉料作为填料,采用模压成型的方法制备成BMC(预制团状模塑料)复合材料。通过正交试验确定BMC材料中不饱和聚酯树脂、短切玻纤和废旧线路板粉料的最优配比,同时得到树脂、粉料及玻纤加入量对BMC材料性能的影响。结果表明:当加入30份的短切玻纤、45份的废旧线路板粉料和30份的不饱和聚酯树脂时,制备的材料综合性能达到最优,弯曲强度和压缩强度可达63.8MPa、101.5MPa。  相似文献   

16.
RTM成型用高性能环氧树脂基体的研究   总被引:1,自引:0,他引:1  
将AG-80和TDE-86以一定比例混合,通过加入自配的低粘度液体固化剂,得到了一种适用于RTM工艺的树脂体系。结果表明,该树脂体系在30℃时的粘度为1081mPa.s,其树脂固化物的拉伸强度为73MPa,弹性模量达到1.36GPa,断裂伸长率为6.3%,弯曲强度为150MPa,弯曲模量为3.12GPa,玻璃化转变温度为191℃,该树脂体系不仅粘度低,还具有优异的力学性能和耐温性,可满足RTM成型工艺对环氧树脂体系的要求。  相似文献   

17.
研究了玻纤增强酚醛注塑料制备过程中基质树脂的选择、固化作用与交联结构的控制及玻纤分散技术,考察了不同基质树脂制备的酚醛注塑料的固化成型结构形态和固化流变特性.进一步采用热固性与热塑性酚醛树脂相复配的基质树脂体系,经配方和制备工艺的优化,制备了高填充量玻纤增强酚醛注塑料.该注塑料具有良好的注塑成型性能,注塑制品具有高强度, 冲击强度达到4.3 kJ&#8226;m-2,弯曲强度137.4 MPa,同时热变形温度为 245 ℃,阻燃性通过美国UL 94 V-0级认证,并具有优良的尺寸稳定性、电绝缘性能和低成本优势.  相似文献   

18.
In this study, acrylated epoxidized flaxseed oil (AEFO) resin is synthesized from flaxseed oil, and flax fiber reinforced AEFO biocomposites is produced via a vacuum‐assisted resin transfer molding technique. Different amounts of flax fiber and styrene are added to the resin to improve its mechanical and physical properties. Both flax fiber and styrene improve the mechanical properties of these biocomposites, but the flexural strength decreases with an increase in styrene content. The mass increase during water absorption testing is less than 1.5% (w/w) for all of the AEFO‐based biocomposites. The density of the AEFO resin is 1.166 g/cm3, which increases to 1.191 g/cm3 when reinforced with 10% (w/w) flax fiber. The flax fiber reinforced AEFO‐based biocomposites have a maximum tensile strength of 31.4 ± 1.2 MPa and Young's modulus of 520 ± 31 MPa. These biocomposites also have a maximum flexural strength of 64.5 ± 2.3 MPa and a flexural modulus of 2.98 ± 0.12 GPa. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41807.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号