共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
为更具体表义社会新词的情感含义及其倾向性,该文提出了一种基于词向量的新词情感倾向性分析方法.在信息时代不断发展变化中,由于语言应用场景不断发展变化以及扩展语义表达的丰富性,网络上不断出现很多表达情感的新词,但是这些新词的表达虽有丰富的含义但缺乏准确的定义,因此对其情感倾向性分析具有一定困难.该文在分析了新词发现方法和词向量训练工具Word2Vec的基础上,研究了基于Word2Vec的情感词新词倾向性分析方法的可行性和架构设计,并面向微博语料进行实验,结果显示新词可以从与其相近的词中分析其情感倾向. 相似文献
4.
目前,在推荐系统研究中,用户的隐式反馈,以及极度稀疏的数据,已成为影响协同过滤推荐效果的主要问题.针对这一现象,本文提出了深度学习协同过滤算法,先利用卷积神经网络,对用户-项目矩阵的隐层特征进行学习,再结合协同过滤,对用户-项目的交互信息进行建模,并将两种特征融合预测推荐列表.以众筹平台的数据为实验对象,比较模型中各参数对推荐效果的影响,并设计与基线方法的对比实验.实验结果表明:均匀采集负反馈,并在一定卷积层数的网络中,数据稀疏度越高,效果越好;对比基线方法,本文提出的算法在公开数据集(Yahoo!Movie)上取得了最好的推荐结果.本文提出的算法有助于提高众筹平台的融资成功率,同时也丰富了推荐系统的研究体系. 相似文献
5.
基于邻域的top-N推荐算法利用隐式反馈数据建立排序模型,其算法性能严重依赖于相似度函数的表现。传统相似性度量函数在隐式反馈数据上会遇到数据过于稀疏和维数过高两个问题,稀疏数据不利于推荐模型选取光滑的邻域,过高的数据维数会导致维数灾难问题,导致推荐算法表现较差。为此提出一种基于表征学习方法的推荐算法,改进算法实现了基于二部图网络的多目标节点表征学习方法,在节点表征中通过嵌入不同层次的网络结构信息和适合推荐任务的次序信息来提升推荐性能。三个不同规模真实数据集上的实验结果表明,该算法相较于常用的基于隐式反馈的推荐模型具有更高的准确率和召回率,特别是针对大规模数据集能够有效缓解矩阵稀疏性问题和维数灾难问题,提高推荐性能。 相似文献
6.
7.
融合显式和隐式反馈已被应用于提升推荐模型的性能,但是,现有的此类推荐模型未能保留显式反馈中反映用户偏好程度的信息,且现有研究认为拥有显式反馈的数据和仅拥有隐式反馈的数据对于模型具有同等影响,未能充分发挥显式反馈的优势.针对这些问题,提出一种新的融合显式和隐式反馈的协同过滤推荐模型(CEICF).首先,所提出模型提取显式反馈中的特征得到用户/物品的全局偏好向量;然后,从隐式反馈中提取用户/物品的潜在向量,进而将两种向量进行融合得到用户/物品的偏好向量;最后,使用神经网络预测用户与物品交互的可能性.在训练模型时,定义一种加权的二进制交叉熵损失函数,加强显式反馈对模型的影响来增强模型捕获用户偏好的能力.为了验证所提出模型的有效性,在覆盖不同领域的现实数据集上进行实验,实验结果表明,CEICF可有效地融合显式和隐式反馈,且推荐效果相对于基线模型有显著提升. 相似文献
8.
一种基于用户播放行为序列的个性化视频推荐策略 总被引:4,自引:0,他引:4
本文针对在线视频服务网站的个性化推荐问题,提出了一种基于用户播放行为序列的个性化推荐策略.该策略通过深度神经网络词向量模型分析用户播放视频行为数据,将视频映射成等维度的特征向量,提取视频的语义特征.聚类用户播放历史视频的特征向量,建模用户兴趣分布矩阵.结合用户兴趣偏好和用户观看历史序列生成推荐列表.在大规模的视频服务系统中进行了离线实验,相比随机算法、基于物品的协同过滤和基于用户的协同过滤传统推荐策略,本方法在用户观看视频的Top-N推荐精确率方面平均分别获得22.3%、30.7%和934%的相对提升,在召回率指标上分别获得52.8%、41%和1065%的相对提升.进一步地与矩阵分解算法SVD++、基于双向LSTM模型和注意力机制的Bi-LSTM+Attention算法和基于用户行为序列的深度兴趣网络DIN比较,Top-N推荐精确率和召回率也得到了明显提升.该推荐策略不仅获得了较高的精确率和召回率,还尝试解决传统推荐面临大规模工业数据集时的数据要求严苛、数据稀疏和数据噪声等问题. 相似文献
9.
作为推荐系统的重要组成部分,协同过滤已成为了当今主流的推荐方法之一.其中基于潜在因子的协同过滤常采用SVD推荐模型分析用户喜好.近年来,随着SVD推荐模型研究的深入,SVD++,TrustSVD等一类带有隐式反馈的SVD推荐模型被相继提出.此类模型能更有效地从有限的数据源中挖掘有用信息并取得了较好的效果,因此受到了人们... 相似文献
10.
显式反馈与隐式反馈相结合,可以有效提升推荐性能.但是现有的融合显式反馈与隐式反馈的推荐系统存在未能发挥隐式反馈数据缺失值反映用户隐藏偏好的能力,或者未能保留显式反馈数据反映用户偏好程度的能力的局限性.为了解决这个问题,提出了一种融合显式反馈与隐式反馈的协同过滤推荐算法.该算法分为两个阶段:第1阶段利用加权低秩近似处理隐式反馈数据,训练出隐式用户/物品向量;第2阶段引入了基线评估,同时将隐式用户/物品向量作为补充,通过显隐式用户/物品向量结合,训练得出用户对物品的预测偏好程度.该算法与多个典型算法在标准数据集上进行了实验比较,其可行性和有效性得到验证. 相似文献
11.
符合学习者特征的学习资源对于提高协作学习效率具有重要的影响。但是传统的学习资源推荐,没有充分考虑学习者、学习资源的特征和高效的推荐算法。针对上述问题,提出了基于协同过滤的学习资源推荐算法,根据学习者学习特征、学习资源特征和学习者对学习资源历史评价信息,采用协同过滤推荐算法,实现学习资源推荐。首先,通过学习者特征和学习资源的评分,寻找相似学习者并计算学习资源预测评分,然后根据该评分值和学习资源与学习者匹配度推荐学习资源,从而为学习者推荐符合自己兴趣爱好最合适的学习资源。实验结果表明该算法在个性化学习资源推荐的准确性上优于传统算法。 相似文献
12.
介绍了协同过滤算法,并对算法进行了改进,解决了用户稀疏的情况下传统算法的不足,同时通过引入评分阈值,显著提高了个性化协同过滤算法的推荐精度。 相似文献
13.
基于矩阵分解的协同过滤算法近年来获得了巨大的成功,但是依然存在冷启动,忽视用户及物品特征等问题,从而导致推荐质量不佳,用户体验度下降.论文提出了一种基于深度学习的混合协同过滤推荐算法,尝试引入堆栈降噪自编码器学习物品的隐含特征,同时结合半监督S4VM和隐含因子模型,综合考虑物品的内容特征及时间因素,以预测未评分的数据,... 相似文献
14.
15.
协同过滤是一种应用广泛的推荐算法,其核心过程是学习用户和商品的向量表示。基于图卷积网络(GCN)的协同过滤算法在向量嵌入过程中加入邻居节点的关联信息,进一步提升了算法的推荐性能。然而,图协同过滤算法中存在过平滑现象,且其仅采用邻接矩阵在局部结构中扩展,没有从图的整体结构出发挖掘节点间潜在的交互模式,使得交互信息来源单一。提出一种基于GCN的双通道协同过滤推荐算法DCCF。将向量嵌入过程划分为局部卷积通道和全局卷积通道,以获取不同类型的连接信息。在局部卷积通道中,直接定位邻域节点并使用单层网络结构完成计算,优化信息的聚合方式以应对过平滑问题。在全局卷积通道中,通过聚类的方式构造全局交互图并参与信息的聚合过程,从而挖掘节点间的潜在联系。将局部信息与全局信息相结合,以获得包含不同类型高阶关系的节点向量表示。在3个公开数据集上进行对比实验,结果表明,相较基准算法中性能表现最优的模型,DCCF在归一化折损累计增益和召回率这2个指标上最高分别提升2.8%和5.0%。 相似文献
16.
当今社会,人们越来越多地通过社交网络来发言、聊天、交友。在互动过程中,除了用户主动关注感兴趣的人之外,社交网络也会为其推荐朋友。然而,所推荐的朋友大部分只是社交网络的推广,不一定符合用户的兴趣。针对社交网络推荐朋友的随机性和不可靠等问题,研究并提出了一种基于用户兴趣标签匹配的高效朋友推荐方案。首先,通过Word2Vec来训练语料库中的关键词,得到每个关键词的向量,产生一个词向量空间。其次,利用余弦相似度技术计算关键词之间的相似度并通过实验进行比较。实验中,综合选取合适的相似度值作为两个词向量是否相似的判断阈值。最后,将选取的相似度阈值应用到所提出的朋友兴趣匹配推荐算法中,并进行性能测试和各方案的仿真比较。结果表明,所提出的方案可靠且准确。 相似文献
17.
个性化推荐系统是根据用户的爱好,给用户推荐符合用户兴趣的对象的一种高级商务智能平台.论文重点探讨基于用户的协同过滤算法,介绍其基本思想和工作流程,并通过高级语言C++来实现三种相似度计算方法,通过实验比较得出了最佳的计算方法,并设计实现了一个电子商务个性化推荐系统原型,对其他同类网站应用个性化推荐系统具有很好的参考价值. 相似文献
18.
基于自注意力网络和神经协同过滤模型(neural collaborative filtering,NCF)提出一种基于自注意力机制的组推荐系统模型SAGR(self-attention group recommendation),用于建模用户交互数据以及学习群组潜在偏好的表示。通过在用户级和项目级分别使用自注意力机制,动态调整组中每个用户的权重,解决偏好融合问题从而得到组表示。再通过多层神经网络框架NCF从数据中挖掘组和项目之间的交互,最终完成群组推荐。在CAMRa2011和Movie Lens数据集上与同类方法进行对比,实验结果表明SAGR方法能够取得更好的组推荐结果。 相似文献
19.
In this paper, we present an improved collaborative filtering (ICF) algorithm by using the heat diffusion process to generate the user correlation. This algorithm has remarkably higher accuracy than the standard collaborative filtering (CF) using Pearson correlation. Furthermore, we introduce a free parameter β to regulate the contributions of objects to user correlation. The numerical simulation results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and diversity. 相似文献