首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
碳量子点的合成、性质及其应用   总被引:2,自引:0,他引:2  
碳量子点(CQDs,C-dots or CDs)是一种新型的碳纳米材料,尺寸在10nm以下,具有良好的水溶性、化学惰性、低毒性、易于功能化和抗光漂白性、光稳定性等优异性能,是碳纳米家族中的一颗闪亮的明星。自从2006年[1]报道了碳量子点(CQDs)明亮多彩的发光现象后,世界各地的研究小组开始对CQDs进行了深入的研究。最近几年的研究报道了各种方法制备的CQDs在生物医学、光催化、光电子、传感等领域中都有重要的应用价值。这篇综述主要总结了关于CQDs的最近的发展,介绍了CQDs的合成方法、表面修饰、掺杂、发光机理、光电性质以及在生物医学、光催化、光电子、传感等领域的应用。  相似文献   

2.
以葡萄糖为碳源,采用一步超声法制备氮掺杂碳量子点,并进行海拉(Hela)细胞成像研究。所获得的氮掺杂碳量子点平均粒径3.3nm,并具有良好的水溶性、光致发光特性。氮掺杂碳量子点具有低细胞毒性,在氮掺杂碳量子点浓度为1mg/mL条件下,Hela细胞的存活率高于90%,在浓度高达5mg/mL条件下,Hela细胞的存活率仍高于60%。  相似文献   

3.
近年来,碳量子点作为一种新型的纳米材料,具有低细胞毒性、强荧光性、良好的生物相容性以及制备方法简单等特点,在生物传感、药物传递、细胞成像以及分析检测等领域具有潜在的应用价值,而受到人们的广泛关注。在此综述了碳量子点的制备方法、性质以及应用等,并对其发展前景进行了展望。  相似文献   

4.
以葡萄糖和甘氨酸为混合碳源,在较低温度下经水热法一步合成了氮掺杂的荧光碳量子点(N-CQDs),然后对氮掺杂碳量子点的形貌、结构、组成、光学性质和细胞毒性进行了表征,最后将其应用于细胞成像。实验结果表明,对碳量子点进行氮掺杂能有效提高其荧光量子产率,其荧光增强是由于表面形成了大量强供电子基团,当葡萄糖和甘氨酸的质量比为2∶1时能获得最高为6.57%荧光量子产率。氮掺杂碳量子点还具有水溶性好、粒度均匀、优异的光致发光性质、低的细胞毒性、多波长成像等诸多优点,有望作为荧光探针应用于细胞成像等领域。  相似文献   

5.
量子点是由Ⅱ-Ⅵ族、Ⅳ-Ⅵ族或Ⅲ-Ⅴ族元素构成的半导体纳米晶体.由于量子点具有很强的光电发射效应和光稳定性,被广泛应用于生物医学领域,介绍了量子点在医学检测、药物研究、医学成像、生物芯片及溶液矩阵等方面的应用.阐述了量子点的毒性机理,总结了量子点理化性质和环境因素对量子点毒性的影响.  相似文献   

6.
近几年,碳量子点作为纳米碳材料中的一颗新星,引起了人们广泛的关注。碳量子点除了具有优秀的光学性质,还有良好的水溶性、低毒性、环境友好、成本低等优点。自从碳量子点被发现以来,人们发现了多种多样的合成碳量子点的方法,主要有电化学法、化学烧蚀法、激光法和微波法等。由于碳量子点具有许多优点,被广泛应用于很多领域,特别是在光催化、生物成像、化学传感等方面。本文介绍了碳量子点的主要合成方法和主要应用。  相似文献   

7.
量子点在细胞以及体内生物中成像的研究进展   总被引:1,自引:1,他引:0  
量子点是一种荧光半导体纳米材料,与生物分子结合成一种高亮度而稳定的荧光探针应用于生物成像。通过生物成像可观察量子点标记分子与其靶标的相互作用,实时观测其在活细胞及活体中的运行轨迹,实现对细胞水平及在活体层次的研究。利用这种生物成像技术还可以研究疾病的发生发展过程。介绍了量子点的光学特性,重点综述了量子点在细胞、体内生物成像中的应用,并展望了其发展前景。  相似文献   

8.
目的 探索木质素碳量子点(CQDs)荧光油墨及其书写式标签、CQDs/聚乙烯醇(PVA)复合荧光薄膜在防伪包装中的应用潜力。方法 以木质素为碳源,采用一锅水热法得到未掺杂碳量子点O-CQDs和硫掺杂碳量子点S-CQDs,并以此为荧光填料,以乙醇、乙二醇和丙三醇的混合液为溶剂,制备荧光油墨及其书写式荧光标签和CQDs/PVA复合荧光薄膜,探索其荧光防伪性能。结果 硫掺杂木质素碳量子点油墨MS-CQDs及其书写标签、PVA复合薄膜在可见光下均无色,在365 nm紫外光照下则呈现强烈的淡蓝色荧光。结论 MS-CQDs书写式称量纸荧光标签及其与PVA的复合薄膜均具有良好的荧光性能,在荧光防伪领域具有良好的应用潜力。  相似文献   

9.
碳量子点(CQDs)是一种零维荧光碳纳米材料,其尺寸一般低于10nm。由于其独特的荧光性质、光学稳定性、发射光谱可调性、低毒性和良好的生物相容性等优势,从而在化学与生物传感、光催化和防伪等领域起到了重要作用。综述了CQDs材料的合成方法、结构性质和在生物成像、化学传感、光催化和防伪领域的研究进展,并且对CQDs材料的发展进行了展望。  相似文献   

10.
由于红光/近红外发射具有深层组织穿透力强、自体荧光小、对生物组织损伤小等特点,具有上述特性的碳点的制备与生物成像应用备受关注.本文以磺化四苯基卟啉为前驱体,采用溶剂热法合成近红外发射的荧光碳点(NIR-CDs).NIR-CDs的最大发射峰位于692 nm,其荧光发射具有激发波长非依赖性,经分析NIR-CDs的近红外荧光...  相似文献   

11.
The emerging graphene quantum dots (GQDs) and carbon dots (C‐dots) have gained tremendous attention for their enormous potentials for biomedical applications, owing to their unique and tunable photoluminescence properties, exceptional physicochemical properties, high photostability, biocompatibility, and small size. This article aims to update the latest results in this rapidly evolving field and to provide critical insights to inspire more exciting developments. We comparatively review the properties and synthesis methods of these carbon nanodots and place emphasis on their biological (both fundamental and theranostic) applications.  相似文献   

12.
Graphene quantum dots (GQDs) have shown great potential in bioimaging applications due to their excellent biocompatibility, low cytotoxicity, feasibility for surface functionalization, physiological stability, and tunable fluorescence properties. This Review first introduces the intriguing optical properties of GQDs that are suitable for biological imaging, and is followed by the GQDs' synthetic strategies. The emergent and latest development methods for tuning GQDs' optical properties are further described in detail. The recent advanced applications of GQDs in vitro, particularly in cell imaging, targeted imaging, and theranostic nanoplatform fabrication, are included. The applications of GQDs for in vivo bioimaging are also covered. Finally, the Review is concluded with the challenges and prospectives that face this nascent yet exciting field.  相似文献   

13.
Molybdenum disulfide (MoS2) quantum dots (QDs) (size <10 nm) possess attractive new properties due to the quantum confinement and edge effects as graphene QDs. However, the synthesis and application of MoS2 QDs has not been investigated in great detail. Here, a facile and efficient approach for synthesis of controllable‐size MoS2 QDs with excellent photoluminescence (PL) by using a sulfuric acid‐assisted ultrasonic route is developed for this investigation. Various MoS2 structures including monolayer MoS2 flake, nanoporous MoS2, and MoS2 QDs can be yielded by simply controlling the ultrasonic durations. Comprehensive microscopic and spectroscopic tools demonstrate that the MoS2 QDs have uniform lateral size and possess excellent excitation‐independent blue PL. The as‐generated MoS2 QDs show high quantum yield of 9.65%, long fluorescence lifetime of 4.66 ns, and good fluorescent stability over broad pH values from 4 to 10. Given the good intrinsic optical properties and large surface area combined with excellent physiological stability and biocompatibility, a MoS2 QDs‐based intracellular microRNA imaging analysis system is successfully constructed. Importantly, the MoS2 QDs show good performance as multiphoton bioimaging labeling. The proposed synthesis strategy paves a new way for facile and efficient preparing MoS2 QDs with tunable‐size for biomedical imaging and optoelectronic devices application.  相似文献   

14.
Carbon quantum dots (CDs) are a class of emerging carbonaceous nanomaterials that have received considerable attention due to their excellent fluorescent properties, extremely small size, ability to penetrate cells and tissues, ease of synthesis, surface modification, low cytotoxicity, and superior water dispersion. In light of these properties, CDs are extensively investigated as candidates for bioimaging probes, efficient drug carriers, and disease diagnostics. Functionalized CDs represent a promising therapeutic candidate for ocular diseases. Here, this work reviews the potential use of functionalized CDs in the diagnosis and treatment of eye-related diseases, including the treatment of macular and anterior segment diseases, as well as targeting Aβ amyloids in the retina.  相似文献   

15.
Semiconductor quantum dots (QDs) have traditionally been synthesized in organic phase and transferred to aqueous solution by functionalizing their surface with silica, polymers, short‐chain thiol ligand, or phospholipid micelles. However, these complex steps result in i) a reduction of the quantum yield (QY) of QDs, ii) partial degrdation of the QDs, and iii) a drastic increase in the hydrodynamic size of QDs, which may hinder their biomedical applications. In this work, the fabrication and applications of cysteine‐capped CdTe/ZnTe QDs, which are directly synthesized in aqueous media, as optical probes for specific targeting of pancreatic and esophageal cancer cells in vitro are reported, as well as their capability for in vivo imaging. The CdTe/ZnTe QDs are synthesized in a one‐pot method and capped with amino acid cysteine, which contains both carboxyl and amine functional groups on their surfaces for bioconjugation. The fabricated QDs have an ultrasmall hydrodynamic diameter (3–5 nm), possess high QY (52%), and are non‐toxic to cells at experimental dosages. Confocal imaging is used to demonstrate a receptor‐mediated uptake of antibody‐conjugated QDs into pancreatic cancer cells in vitro. In vitro cytotoxicity studies (MTS‐assay) show that the IC50 value of these QDs is ≈160 µg mL?1, demonstrating low toxicity. In addition, the QDs are used for small‐animal imaging where the in vivo biocompatiblity of these QDs and their clearance following systemic injection is studied.  相似文献   

16.
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.  相似文献   

17.
As novel fluorescent nanomaterials, carbon dots (CDs) exhibit excellent photostability, good biocompatibility, and high quantum yield (QY). Their superior properties make them promising candidates for biomedical assays and therapy. Among them, the red‐emission (>600 nm) CDs have attracted increasing attention in the past years due to their little damage to the biological matrix, deep tissue penetration, and minimum autofluorescence background of biosamples. This Review, summarizes the recent progress of far‐red to near‐infrared (NIR) CDs from the preparation and their biological applications. The challenges in designing far‐red and NIR CDs and their further applications in biomedical fields are also discussed.  相似文献   

18.
Carbon dots (CDs), a kind of carbon material discovered accidentally, exhibit unexpected advantages in fluorescence imaging/sensing such as photostability, biocompatibility, and low toxicity. For emerging theranostics, an interdiscipline created by integrating therapy and diagnostics, CDs are good candidates when they are combined with targeted chemo/gene/photodynamic/photothermal therapeutic moieties. Here, the development of CDs in nanomedicine is reviewed from their use as original imaging agents and/or drug carriers to multifunctional theranostic systems. Finally, the challenges and prospects of the next‐generation of CD‐based theranostics for clinical applications are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号