首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 656 毫秒
1.
地震作用下悬臂式挡土墙主动土压力的计算十分重要。为了分析悬臂式挡土墙在地震荷载作用下主动土压力分布情况,基于滑楔体平衡理论,考虑水平、竖向地震力随时间变化对地震主动土压力的影响,运用拟动力学方法,推导出地震主动土压力、第二临界破裂角的计算公式,并研究挡土墙后填土的内摩擦角和粘聚力、挡土墙与后填土之间的摩擦角和粘聚力、墙体倾角等参数对地震主动土压力系数和临界破裂角的影响。研究结果表明:第二临界破裂角随竖向地震力系数、挡土墙后方填土内摩擦角的增大而增大,随水平地震力系数、挡土墙与后方填土摩擦角的增大而减小;地震主动土压力随水平、竖向地震力系数的增大而增大,随挡土墙后方填土内摩擦角的增大而减小。  相似文献   

2.
地震荷载下挡土墙动土压力分布是边坡支挡结构抗震设计的重要内容。本文采用拟动力法,考虑地震加速度随时间及挡土墙深度变化,采用水平薄层分析法与极限平衡理论,推导了地震荷载作用下挡土墙动土压力随地震加速度时程变化的表达式,研究了墙后破裂面倾角、动土压力系数、动土压力合力作用点位置随地震时程变化的特征,地震加速度对挡土墙动土压力分布的影响。结果表明:①本文方法确定的土压力系数介于Coulomb土压力系数和Rankine土压力系数之间。②动土压力合力作用点位置随加速度时程呈周期性变化,合力作用点高度高于传统方法的H /3。③地震荷载下挡土墙主动土压力呈非线性分布,地震加速度、内摩擦角对动土压力分布有显著影响。  相似文献   

3.
针对现有挡土墙抗震设计影响因素考虑不足等问题,运用拟静力法和水平条分法分析加筋土挡墙的地震稳定性,并研究土体内摩擦角、水平地震力加速度系数、填土粘聚力、挡土墙倾角和滑动体上部荷载等参数对地震稳定性的影响。结果表明:加筋土挡墙的地震稳定性与水平地震力加速度系数和滑动体上部荷载有显著关系,且变化趋势与之成正比;与土体内摩擦角和填土粘聚力的变化趋势成反比;当条件相同时,倾斜加筋土挡墙的地震稳定性比竖直挡墙的稳定性好。  相似文献   

4.
基于库仑被动土压力理论和极限平衡法,提出一种改进的重力式挡土墙被动土压力分析方法。该方法能反映挡土墙变位模式和位移大小的影响,还能考虑和挡墙位移相关的墙后填土发挥的内摩擦角对土压力分布的影响。分析结果表明,随着挡土墙顶位移的增大,墙后填土达到极限平衡状态的区域逐渐增大,墙后土压力逐渐增大;只有当墙顶位移充分大时,才能达到库仑被动极限平衡状态,相应的土压力等于库仑被动土压力。  相似文献   

5.
计算重力式挡土墙主动土压力的传统方法如郎肯理论、库伦理论均将挡土墙视为平面问题来研究,但实际上挡土墙墙背填土主动土压力具有空间特性。文中对重力式挡土墙主动土压力的计算从平面问题和空间问题两方面进行了理论分析。实例的数值计算结果表明,按平面问题计算的重力式挡土墙的主动土压力比按空间问题计算的主动土压力较为保守,但按空间问题计算的主动土压力较按平面问题计算的主动土压力也存在安全富余量偏小的问题。  相似文献   

6.
为了准确地设计挡土墙,研究非极限位移时的土压力计算.将非极限状态下的被动土压力定义为中间被动土压力,分析土体的破坏机理,建立内外摩擦角与位移之间的关系公式.改进库仑土压力理论,根据静力平衡条件,推导出在刚性挡土墙平动模式下中间被动土压力强度、中间被动土压力合力和中间被动土压力系数的理论公式.分别计算分析填土为干砂及填土为饱和砂土的模型试验,与实测数据进行对比,发现两者结论比较吻合.在平动模式下,中间被动土压力与被动土压力系数均随着位移的发展而增大,且在任一位移时中间被动土压力沿墙高近似成线性分布.  相似文献   

7.
粘性成层填土的主动土压力   总被引:1,自引:0,他引:1  
为了考虑填土凝聚力及其与挡土墙墙背接触面上粘着力计算粘性成层填土挡墙的土压力,假设滑裂面为平面,运用数学、力学手段,推得了粘性成层填土挡墙的主动土压力计算公式,编制了相应的计算程序,进行了算例分析.结果表明:考虑与不考虑滑裂面上的凝聚力c及墙背上的粘着力cw,计算结果差异较大,该差异随着c、cw的增大而增大;公式精度可靠,应用方便.  相似文献   

8.
刚性挡土墙地震主动土压力的非线性分布   总被引:5,自引:1,他引:5  
以Mononobe-Okabe假定为前提,利用水平层分析法,建立了地震荷载作用下刚性挡土墙平移模式下的主动土压力强度的一阶微分方程,并求得非线性分布解.所得合力公式与Mononobe-Okabe公式完全相同.分析结果表明,地震系数对土压力强度分布有很大影响.另外,通过探讨填土的内摩擦角、墙背的摩擦角以及地震系数对主动土压力合力作用点高度的影响,认为Mononobe-Okabe理论对于平移模式下刚性挡土墙的抗倾覆稳定性是偏于危险的.  相似文献   

9.
填土的含水率对土体抗剪强度指标有重要影响,进而影响到土压力的计算,从而影响到挡土墙的稳定性能。本文在前人研究含水率对非饱和性填土抗剪强度参数影响的研究基础上,利用ZJ型直剪仪对土样进行剪切试验,结合强度理论相关知识得出了抗剪强度参数C和φ,继而对实验结果进行数值模拟确定了含水率影响C和φ的影响系数,得出拟合优度良好的含水率粘聚力、含水率内摩擦角的关系式。在对土样利用万能试验机进行加压试验时,保持土样颗粒级配及填土的密实度基本一致,仅改变填土的含水率,研究了不同含水率的填土对挡土墙性能的影响。实验中发现,随着实验加压力的增大,填土的可压缩性与填土含水率呈现非线性关系。可压缩性首先随着含水率增大而增大,当含水率达到某一值可压缩性又有所下降。实验最后根据朗肯理论计算填土各种含水率状态下挡土墙所受到的土压力,对结果进行数值模拟得出含水率主动土压力、含水率被动土压力之间的关系式。  相似文献   

10.
地震力和地下水渗流共同作用条件下的饱和填土土压力的计算问题是土力学中土压力课题研究的热点和难点所在。对地下水渗流流线为竖直向下的稳定渗流(问题1)和流线弯曲、地下水从挡土墙排出的稳定渗流(问题2)2种简化状态,基于拟静力法和库仑土压力理论,建立了动主动土压力的计算公式。通过和前人研究的对比分析,验证了该计算公式的可靠性,讨论了填土内摩擦角对动主动土压力的影响。结果表明,总动主动土压力随填土有效内摩擦角的增大均呈非线性减小变化,且问题2的总主动土压力随有效内摩擦角增大的减小变化更显著。  相似文献   

11.
地震荷载作用下双层填土的主动土压力计算   总被引:1,自引:0,他引:1  
针对挡土墙后为成层黏性填土的情况,提出一种地震土压力计算方法.在Mononobe-Okabe理论的基本假定下,考虑了填土黏聚力及墙土接触面上的黏着力,推导出双层填土的地震主动土压力计算表达式.在单层无黏性填土条件下,该公式可以退化为Mononobe-Okabe公式.参数分析结果表明:地震主动土压力随水平地震加速度的增大而增大,随竖向地震加速度的增大而减小;水平向和竖向地震荷载对土压力值的影响显著.算例分析结果表明原有的分层法计算得到的地震土压力值是偏大的.  相似文献   

12.
针对挡土结构土压力与位移之间的关系,提出一种适用于既有地下室外墙影响下的挡土结构非极限主动土压力计算方法。基于卸荷路径推导了土体力学参数与位移关系和考虑土拱效应下的非极限主动土压力系数,运用应力状态法和静力平衡法给出了既有地下室外墙影响下的非极限主动土压力统一解,通过与室内相关模拟试验对比,采用应力状态法得到的结果较静力平衡法更接近于实际。基于挡土结构非极限主动土压力变化规律,讨论了位移比、两墙间距、墙土摩擦角、黏聚力等参数对土压力分布、合力及倾覆力矩的影响,揭示了其变化规律。通过与物理实验和算例与理论计算方法所得土压力和力矩的对比表明,所建立的计算方法合理可行,为进一步研究挡土结构非极限主动土压力理论计算提供了一定的依据。  相似文献   

13.
采用库仑土压力理论的假设,通过研究刚性挡墙绕墙底转动极限状态土体内主应力拱形状,计算了土层平均竖向应力和剪应力,得到了对应于不同内摩擦角和墙土摩擦角的侧土压力系数和水平摩擦系数的理论公式。将其用于水平微分单元法求解挡墙绕墙底转动时的主动土压力,得到了挡土墙主动土压力强度、土压力合力和合力作用点的理论公式,分析了填土内摩擦角和墙土摩擦角对土侧压力系数、水平摩擦系数、土压力强度、土压力合力、土压力合力作用点的影响,并与模型试验数据进行了比较。  相似文献   

14.
刚性挡土墙地震主动土压力的拟动力学分析   总被引:1,自引:0,他引:1  
采用拟动力学方法的基本假定,考虑地震加速度的放大效应,利用水平层分析法,求得在地震荷载作用下随地震时间变化的主动土压力强度的分布解.将最危险滑动面倾角和合力作用点高度与传统方法进行比较,分析合力作用点时程曲线的特征,探讨水平加速度系数及加速度放大系数对土压力分布的影响.结果表明:采用该方法计算得到的滑动面倾角和合力作用点高度大于传统方法计算值;合力作用点高度在地震时是不断变化的;水平地震加速度系数及加速度放大系数均对土压力分布有很大影响,不考虑加速度的放大效应是偏于危险的.  相似文献   

15.
挡土墙土压力非线性分布的计算方法研究   总被引:3,自引:0,他引:3       下载免费PDF全文
基于数学方法对斜单元体进行力和力矩的平衡分析,得到了墙背粗糙且填土坡面倾斜情况下的土压力解析解,并进一步分析了填土坡面倾角对土压力的影响。对比分析表明:经典朗肯土压力理论可看作是解析解在墙背光滑、填土坡面水平情况下的特例;在填土内摩擦角一定时,挡土墙墙后滑动楔体的极限破裂角随着填土坡面倾角或墙土之间摩擦角的增大而减小。基于解析解得到的土压力分布呈现明显的非线性特征,且在填土面水平情况下挡土墙墙脚处的土压力为0,这与实测数据取得了很好的一致。分析还表明,随着填土坡面倾角的增大,墙脚处的土压力不再接近0反而越来越大。文中的求解方法还可进一步拓展至探求填土为粘性土情况下挡土墙上土压力的解析解。  相似文献   

16.
针对挡土墙墙后为双层黏性土的情况,提出一种可靠的土压力计算方法.在平面滑裂面假设下,考虑填土黏聚力及填土与挡土墙墙背接触面上的黏着力,推导出双层填土的挡土墙主动土压力关于滑裂面倾角的计算表达式.在单层填土条件下将公式退化对比,表明该方法同样适用于单层填土的工况.通过算例将该方法的计算结果与工程实测值及分层法计算结果进行分析对比,结果表明,该方法的计算结果与实测值较符合.当填土为无黏性土时,可以采用改进分层法计算土压力;当墙后填土为黏性土时,改进分层法计算误差较大,建议采用该方法.  相似文献   

17.
In order to find the dynamic response laws of retaining walls affected by certain earthquake loads, the influence of the seismic wave characteristics and sub-grade fill parameters (including the foundation surface slope) were focused on, and a series of tests were performed. The results show that the maximum stress of the retaining wall decreases as internal friction angle, foundation slope, filled soil cohesion and the biggest dynamic elastic modulus increase, while it increases with the seismic frequency and seismic input peak dropping. The addition value of dynamics earth pressure increases when seismic frequency and seismic input peak are reduced, while it decreases when the filled soil cohesion and internal friction angle rise. Meanwhile, dynamic elastic modulus and foundation slope have no obvious influences on addition value of dynamics earth pressure. The slope will be instable if the seismic input peak exceeds 0.5g and be disruptive if seismic frequency is larger than 2.5 Hz. The mid-lower parts of retaining walls are in most heavy and obvious response to these factors, which reveals the mechanism of “belly burst” in retaining wall that appears commonly in practical projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号