首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New approach for scheduling crude oil operations   总被引:1,自引:0,他引:1  
Scheduling of crude oil operations is crucial to petroleum refining, which includes determining the times and sequences of crude oil unloading, blending, and CDU feeding. In the last decades, many approaches have been proposed for solving this problem, but they either suffered from composition discrepancy [Lee et al. 1996. Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management. Industrial and Engineering Chemistry Research 35, 1630-1641; Jia et al., 2003. Refinery short-term scheduling using continuous time formulation: crude-oil operations. Industrial and Engineering Chemistry Research 42, 3085-3097; Jia and Ierapetritou, 2004. Efficient short-term scheduling of refinery operations based on a continuous time formulation. Computer and Chemical Engineering 28, 1001-1019] or led to infeasible solutions for some cases [Reddy et al., 2004a. Novel solution approach for optimizing crude oil operations. A.I.Ch.E. Journal 50(6), 1177-1197; 2004b. A new continuous-time formulation for scheduling crude oil operations. Chemical Engineering Science 59, 1325-1341]. In this paper, coastal and marine-access refineries with simplified workflow are considered. Unlike existing approaches, the new approach can avoid composition discrepancy without using iterative algorithm and find better solution effectively. In this approach, a new mixed integer non-linear programming (MINLP) formulation is set up for crude oil scheduling firstly, and then some heuristic rules collected from expert experience are proposed to linearize bilinear terms and prefix some binary variables in the MINLP model. Thus, crude oil scheduling can be expressed as a complete mixed integer linear programming (MILP) model with fewer binary variables. To illustrate the advantage of the new approach, four typical examples are solved with three models. The new model is compared with the most effective models (RKS(a) and RKS(b) models) presented by Reddy et al. [2004a. Novel solution approach for optimizing crude oil operations. A.I.Ch.E. Journal 50(6), 1177-1197; 2004b. A new continuous-time formulation for scheduling crude oil operations. Chemical Engineering Science 59, 1325-1341], which proves that the new approach is valid and feasible in most small-size and medium-size problems.  相似文献   

2.
原油调度是炼油企业生产的第一个环节,它直接影响后续生产过程的稳定性和经济性.文中采用连续时间建模方法.建立了油轮到达时间不确定条件下的原油从到港、卸载、储存、调合到进料全过程的随机规划机会约束调度优化模型,模型的优化目标是最小化给定调度时界内的总操作费用.采用直方图法对油轮迟到时间进行回归,得到油轮迟到时间的概率密度函数和分布函数,并引入置信水平,将模型中的不确定性约束转化为确定性约束,使得油轮到达时间不确定条件下的随机规划机会约束模型转变为可以求解的确定性混合整数非线性规划模型.针对原油调度模型的特点,采用广义Benders分解算法将原模型分解为两个混合整数线性规划问题和一个非线性规划问题进行迭代求解.避免了直接求解混合整数非线性规划问题的复杂性.最后,将建立的模型和算法应用于背景企业的原油调度过程,结果表明模型和算法都有良好的实用性.  相似文献   

3.
In today's competitive business climate characterized by uncertain oil markets, responding effectively and speedily to market forces, while maintaining reliable operations, is crucial to a refinery's bottom line. Optimal crude oil scheduling enables cost reduction by using cheaper crudes intelligently, minimizing crude changeovers, and avoiding ship demurrage. So far, only discrete-time formulations have stood up to the challenge of this important, nonlinear problem. A continuous-time formulation would portend numerous advantages, however, existing work in this area has just begun to scratch the surface. In this paper, we present the first complete continuous-time mixed integer linear programming (MILP) formulation for the short-term scheduling of operations in a refinery that receives crude from very large crude carriers via a high-volume single buoy mooring pipeline. This novel formulation accounts for real-world operational practices. We use an iterative algorithm to eliminate the crude composition discrepancy that has proven to be the Achilles heel for existing formulations. While it does not guarantee global optimality, the algorithm needs only MILP solutions and obtains excellent maximum-profit schedules for industrial problems with up to 7 days of scheduling horizon. We also report the first comparison of discrete- vs. continuous-time formulations for this complex problem.  相似文献   

4.
This work focuses on the scheduling of refinery operations from crude oil processing to the blending and dispatch of finished products. A new algorithm for Lagrangian decomposition (LD) is proposed and applied to realistic large scale refinery scheduling problem to evaluate its efficiency. A novel strategy is presented to formulate restricted relaxed sub-problems based on the solution of the Lagrangian relaxed sub-problems that take into consideration the continuous process characteristic of the refinery. This new algorithm, referred to as restricted Lagrangian decomposition algorithm, the best lower bound is obtained amongst the restricted-relaxed sub-problems and relaxed sub-problems in each iteration. The goal of the decomposition is to produce better solutions for those integrated scheduling problems that cannot be solved in reasonable computation times. The application of the proposed algorithm results in substantial reduction in CPU solution time, duality gap, and the total number of iterations compared to classical LD.  相似文献   

5.
生产调度优化对于炼油企业提高经济效益、增强市场响应速度有着重要的作用。本文设计并开发出一款图形化炼厂生产调度优化软件,采用MVC架构技术,实现了调度优化建模的图形化,可以方便组态炼油厂调度模型;将开源优化代码Coin-OR移植为调度优化软件的求解器,实现了求解器与图形化建模接口的连接;丰富的报表输出,让现场操作工可以各种形式获得调度优化结果;完善的内部模型数据管理和丰富的外部数据接口,包括原油性质指标库和原油评价数据库接口、成品油性质指标库等。仿真结果表明,该软件能够优化出符合炼厂生产实际的调度优化排产方案。  相似文献   

6.
An integrated approach for refinery production scheduling and unit operation optimization problems is presented. Each problem is at a different decision making layer and has an independent objective function and model. The objective function at the operational level is an on-line maximization of the difference between the product revenue and the energy and environmental costs of the main refinery units. It is modeled as an NLP and is constrained by ranges on the unit's operating condition as well as product quality constraints. The production scheduling layer is modeled as an MILP with the objective of minimizing the logistical costs of unloading the crude oil over a day-to-week time horizon. The objective function is a linear sum of the unloading, sea waiting, inventory, and setup costs. The nonlinear simulation model for the process units is used to find optimized refining costs and revenue for a blend of two crudes. Multiple linear regression of the individual crude oil flow rates within the crude oil percentage range allowed by the facility is then used to derive linear refining cost and revenue functions. Along with logistics costs, the refining costs or revenue are considered in the MILP scheduling objective function. Results show that this integrated approach can lead to a decrease of production and logistics costs or increased profit, provide a more intelligent crude schedule, and identify production level scheduling decisions which have a tradeoff benefit with the operational mode of the refinery.  相似文献   

7.
For those refineries which have to deal with different types of crude oil, blending is an attractive solution to obtain a quality feedstock. In this paper, a novel scheduling strategy is proposed for a practical crude oil blending process. The objective is to keep the property of feedstock, mainly described by the true boiling point (TBP) data, consistent and suitable. Firstly, the mathematical model is established. Then, a heuristically initialized hybrid iterative (HIHI) algorithm based on a two-level optimization structure, in which tabu search (TS) and differential evolution (DE) are used for upper-level and lower-level optimization, respectively, is proposed to get the model solution. Finally, the effectiveness and efficiency of the scheduling strategy is validated via real data from a certain refinery.  相似文献   

8.
炼油厂氢气系统优化调度及其应用   总被引:1,自引:1,他引:0       下载免费PDF全文
焦云强  苏宏业  侯卫锋 《化工学报》2011,62(8):2101-2107
建模求解,并通过实例证明了模型的有效性和可行性,为实际的炼油厂氢气系统优化调度起到了指导作用。  相似文献   

9.
In reality, crudes from unloading storage tanks at a docking berth may experience long-distance pipeline transportation to refinery charging tanks before their processing by crude distillation units. Such pipeline transportations cause significant transport delay and crude holdup that will substantially affect plant production performance. Unfortunately, current short-term crude scheduling studies have never systematically considered these issues. In this work, a new continuous-time crude scheduling model has been developed, which addresses the long-distance pipeline transportation and other realistic considerations such as brine settling and multiple jetties for crude unloading. The feeding of crudes into pipeline, and crude movements inside pipeline, as well as crude discharging to the receiving charging tanks are combined with the continuous time formulation of crude scheduling. The efficacy of the developed scheduling model has been demonstrated by three case studies including one industrial size example. An outer-approximation (OA) based iterative algorithm (Karuppiah et al., 2008) is implemented to successfully solve the case studies.  相似文献   

10.
In the chemical process industry and in particular in oil refining, there is an interest in optimizing the product movements throughout the tank farm. The problem is known as “tank farm management”. Product movement and scheduling have a big economic impact on refinery operations. In this paper two subproblems have been studied. Within the basic one, the one level structure of parallel tanks is observed. Within the more complex case, two such basic structures in a series are considered. In solving both scheduling cases, the method of mathematical programming has been used.  相似文献   

11.
Crude oil selection and procurement is the most important step in the refining process and impacts the profit margin of the refinery significantly. Due to uncertain quality of the crudes, conventional deterministic modeling and optimization methods are not suitable for refinery profitability enhancement. Therefore, a novel optimization scheme for crude oil procurement integrated with refinery operations in the face of uncertainties is presented. The decision process comprises two stages and is solved using a scenario‐based stochastic programming formulation. In Stage I, the optimal crude selections and purchase amounts are determined by maximizing the expected profit across all scenarios. In Stage II, the uncertainties are realized and optimal operations for the refinery are determined according to this realization. The resulting large‐scale mixed‐integer nonlinear programming formulation incorporates integer variables for crude selection and continuous variables for refinery operations, as well as bilinear terms for pooling processes. Nonconvex generalized Benders decomposition is used to solve this problem to obtain an global optimum efficiently. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1038–1053, 2016  相似文献   

12.
In this work we present an outer-approximation algorithm to obtain the global optimum of a nonconvex mixed-integer nonlinear programming (MINLP) model that is used to represent the scheduling of crude oil movement at the front-end of a petroleum refinery. The model relies on a continuous time representation making use of transfer events. The proposed algorithm focuses on effectively solving a mixed-integer linear programming (MILP) relaxation of the nonconvex MINLP to obtain a rigorous lower bound (LB) on the global optimum. Cutting planes derived by spatially decomposing the network are added to the MILP relaxation of the original nonconvex MINLP in order to reduce the solution time for the MILP relaxation. The solution of this relaxation is used as a heuristic to obtain a feasible solution to the MINLP which serves as an upper bound (UB). The lower and upper bounds are made to converge to within a specified tolerance in the proposed outer-approximation algorithm. On applying the proposed technique to test examples, significant savings are realized in the computational effort required to obtain provably global optimal solutions.  相似文献   

13.
Refinery scheduling attracts increasing concerns in both academic and industrial communities in recent years. However, due to the complexity of refinery processes, little has been reported for success use in real world refineries. In academic studies, refinery scheduling is usually treated as an integrated, large-scale optimization problem, though such complex optimization problems are extremely difficult to solve. In this paper, we proposed a way to exploit the prior knowledge existing in refineries, and developed a decision making system to guide the scheduling process. For a real world fuel oil oriented refinery, ten adjusting process scales are predetermined. A C4.5 decision tree works based on the finished oil demand plan to classify the corresponding category (i.e. adjusting scale). Then, a specific sub-scheduling problem with respect to the determined adjusting scale is solved. The proposed strategy is demonstrated with a scheduling case originated from a real world refinery.  相似文献   

14.
Uncertainty in refinery planning presents a significant challenge in determining the day-to-day operations of an oil refinery. Deterministic modeling techniques often fail to account for this uncertainty, potentially resulting in reduced profit. The stochastic programming framework explicitly incorporates parameter uncertainty in the problem formulation, thus giving preference to robust solutions. In this work, a nonlinear, multiperiod, industrial refinery problem is extended to a two-stage stochastic problem, formulated as a mixed-integer nonlinear program. A crude-oil sequencing case study is developed with binary scheduling decisions in both stages of the stochastic programming problem. Solution via a decomposition strategy based on the generalized Benders decomposition (GBD) algorithm is proposed. The binary decisions are designated as complicating variables that, when fixed, reduce the full-space problem to a series of independent scenario subproblems. Through the application of the GBD algorithm, a feasible mixed-integer solution is obtained that is more robust to uncertainty than its deterministic counterpart.  相似文献   

15.
Scheduling of crude oil operations is a critical and complicated component of overall refinery operations, because crude oil costs account for about 80% of the refinery turnover. Moreover, blending with less expensive crudes can significantly increase profit margins. The mathematical modeling of blending different crudes in storage tanks results in many bilinear terms, which transforms the problem into a challenging, nonconvex, and mixed‐integer nonlinear programming (MINLP) optimization model. Two primary contributions have been made. First, the authors developed a novel unit‐specific event‐based continuous‐time MINLP formulation for this problem. Then they incorporated realistic operational features such as single buoy mooring (SBM), multiple jetties, multiparcel vessels, single‐parcel vessels, crude blending, brine settling, crude segregation, and multiple tanks feeding one crude distillation unit at one time and vice versa. In addition, 15 important volume‐based or weight‐based crude property indices are also considered. Second, they exploited recent advances in piecewise‐linear underestimation of bilinear terms within a branch‐and‐bound algorithm to globally optimize the MINLP problem. It is shown that the continuous‐time model results in substantially fewer bilinear terms. Several examples taken from the work of Li et al. are used to illustrate that (1) better solutions are obtained and (2) ε‐global optimality can be attained using the proposed branch‐and‐bound global optimization algorithm with piecewise‐linear underestimations of the bilinear terms. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

16.
郑万鹏  高小永  朱桂瑶  左信 《化工学报》2021,72(11):5481-5501
原油作业过程是石油供应链的重要组成环节,包括炼油企业生产过程中的原油采购、原油分配、原油输送、原油储存和原油调和等多个工业流程。原油作业过程优化具有很高的学术理论价值与工业应用价值,与其相关的研究工作是目前学术界与工业界共同关注的热点。首先简要描述了原油作业过程,并对其优化问题的难点进行分析;其次,分别从优化模型、优化算法以及不确定性优化方法三个研究角度,重点阐述了原油采购优化、原油储运优化、原油调和优化以及不确定性条件下原油作业优化四个主要研究方向的学术进展,并对当前已有的研究成果进行了归纳总结;最后,对原油作业过程优化当前存在的一些问题提出了建议,并对该领域未来的发展方向与趋势进行了展望。  相似文献   

17.
Scheduling of crude oil operations is an important component of overall refinery operations, because crude oil costs account for about 80% of the refinery turnover. The mathematical modeling of blending different crudes in storage tanks results in many bilinear terms, which transform the problem into a challenging, nonconvex, mixed‐integer nonlinear programming (MINLP) optimization model. In practice, uncertainties are unavoidable and include demand fluctuations, ship arrival delays, equipment malfunction, and tank unavailability. In the presence of these uncertainties, an optimal schedule generated using nominal parameter values may often be suboptimal or even become infeasible. In this article, the robust optimization framework proposed by Lin et al. and Janak et al. is extended to develop a deterministic robust counterpart optimization model for demand uncertainty. The recently proposed branch and bound global optimization algorithm with piecewise‐linear underestimation of bilinear terms by Li et al. is also extended to solve the nonconvex MINLP deterministic robust counterpart optimization model and generate robust schedules. Two examples are used to illustrate the capability of the proposed robust optimization approach, and the extended branch and bound global optimization algorithm for demand uncertainty. The computational results demonstrate that the obtained schedules are robust in the presence of demand uncertainty. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2373–2396, 2012  相似文献   

18.
分布式并行算法在长周期原油混输调度中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
邹来禧  李初福  何小荣 《化工学报》2009,60(8):2003-2009
为了有效求解长周期原油混输调度问题,提出了基于事件树的分布式并行算法。该方法把原油混输调度问题分解为码头调度子问题和厂区调度子问题,采用基于事件树的建模方法,并根据两个子问题的求解顺序提出了原油混输调度问题的分布式并行算法。本方法采用主从式并行结构,主节点把求解码头调度子问题所需的原油质量要求信息发送到各从节点,然后各从节点把与质量要求信息对应的码头调度最优解返回给主节点,通过综合比较两个子问题的解,从而得出最优的调度方案。实例计算表明,该并行算法可以有效减少问题的求解时间,特别是对不同常减压对原油质量要求不同时的长周期调度(如4周)问题,采用串行算法在48 h内都无法得到可行解,而采用此算法用3台计算机可以在25 h内得到最优解。  相似文献   

19.
The aim of this paper is to introduce a methodology to solve a large-scale mixed-integer nonlinear program (MINLP) integrating the two main optimization problems appearing in the oil refining industry: refinery planning and crude-oil operations scheduling. The proposed approach consists of using Lagrangian decomposition to efficiently integrate both problems. The main advantage of this technique is to solve each problem separately. A new hybrid dual problem is introduced to update the Lagrange multipliers. It uses the classical concepts of cutting planes, subgradient, and boxstep. The proposed approach is compared to a basic sequential approach and to standard MINLP solvers. The results obtained on a case study and a larger refinery problem show that the new Lagrangian decomposition algorithm is more robust than the other approaches and produces better solutions in reasonable times.  相似文献   

20.
Cross-docking is a logistic strategy for moving goods from suppliers to customers via a cross-dock terminal with no permanent storage. The operational planning of a cross-dock facility involves different issues such as vehicle routing, dock door assignment and truck scheduling. The vehicle routing problem seeks the optimal routes for a homogeneous fleet of vehicles that sequentially collects goods at pickup points and delivers them to their destinations. The truck scheduling problem deals with the timing of unloading and reloading operations at the cross-dock. This work introduces a mixed-integer linear programming formulation for the scheduling of single cross-dock systems that, in addition to selecting the pickup/delivery routes, simultaneously decides on the dock door assignment and the truck scheduling at the cross-dock. The proposed monolithic formulation is able to provide near-optimal solutions to medium-size problems involving up to 70 transportation orders, 16 vehicles and 7 strip/stack dock doors at acceptable CPU times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号