首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
《钢结构》2017,(10)
针对蜂窝梁腹板在纯弯状态下的弹性屈曲,利用ANSYS 15.0建立了正六边形孔蜂窝梁腹板在纯弯应力状态下的有限元模型,研究了四边简支开孔板在纯弯状态下的屈曲模式,分析了孔洞尺寸对蜂窝梁腹板屈曲临界应力的影响,提出了纯弯状态下开孔板的屈曲系数计算式,得到了蜂窝梁开孔腹板在纯弯状态下的高厚比限值。研究表明:无论开孔数目多少,最大平面外屈曲位移均发生在各孔洞正上边缘;蜂窝梁腹板高厚比是影响开孔板屈曲临界应力的主要因素,建议对于弯矩作用较大的蜂窝梁腹板取0.6γ0.7,0.7β0.8的孔洞尺寸容易实现稳定性和经济性要求(γ为孔高比,β为距高比);拟合出的开孔板屈曲系数计算式,误差不超过5%,具有良好的精度。  相似文献   

2.
以无孔板件的屈曲理论为基础,应用ANSYS有限元软件对开单排圆孔板件在单向非均匀受压情况下的屈曲性能进行了分析研究。依次探讨了板的长宽比、宽厚比、孔径、孔洞位置及边界条件等因素对开孔板屈曲承载力的影响。最后根据数值分析的结果,给出了在板件上设置孔洞的一些建议。  相似文献   

3.
《钢结构》2010,25(2):82-90
受压或受弯开孔薄板的弹性屈曲性能 摘要:开发、论证并总结了一组闭合公式,可以估算在弯矩或压力作用下,板的单个或多个开孔对其临界弹性屈曲应力的影响。公式适用于四边简支和三边简支的板(这在设计中又称为加劲板和非加劲板)。由于有限壳单元特征值屈曲分析需要运用商业有限元程序,而这些程序又不是专为结构分析而开发的,不能很方便地用于工程设计,所以可以采用这些公式作为这种屈曲分析方法的简化替代。  相似文献   

4.
本文通过对均匀压力作用下的四边简支矩形板在弹性状态下的平衡条件,按不同板件宽厚比求得屈曲应力,并以此为基础,进一步对其它支承条件及弹塑性状态(并考虑残余应力和初弯曲影响)、不同嵌固作用下板的屈曲应力的计算,进行了论述。并具体例述了由板件屈曲应力和构件临界应力等稳条件下工字形、箱形截面受压构件的翼缘和腹板宽(高)厚比的计算,经12个板件屈曲试验论证相符较好;同时,运用弹塑性理论对压弯作用下腹扳受剪、截面塑化不等的工字形、箱形截面构件的翼缘和腹板宽(高)厚比的规范规定,详细作了解说。  相似文献   

5.
应用不同的特征函数描述了矩形板在非均匀压力作用下的屈曲形态,解决了采用三角级数为屈曲函数模拟非均匀受压荷载作用下单侧表面约束矩形板件屈曲模态的不对称问题;通过伽辽金法建立屈曲控制方程组,分析了非均匀荷载作用对矩形钢管混凝土构件局部弹性屈曲性能的影响。结果表明:钢管屈曲系数随着不均匀荷载梯度α增加而增大,纯弯作用下(α=2)的板件弹性屈曲荷载特征值约为轴压作用下的6倍;钢板的宽厚比限值随不均匀加载梯度α的增大而增加;非均匀荷载作用下非加载边固支约束板件的屈曲系数明显大于简支约束的板件。  相似文献   

6.
应用有限元软件ANSYS对烟道、选择性催化还原(SCR)反应器及支架进行整体结构静力分析,选取反应器上变形最大的侧壁板及有矩形大开孔的壁板作为研究对象,分别研究了加劲形式及开孔对薄钢板稳定性的影响。结果表明:对于单向受压的加劲板,现有的加劲肋设计方法满足稳定性的要求;在其他条件相同、板受单向均布压力时,加劲肋截面面积相同的条件下,配置L型加劲肋时板的稳定性比配置T型加劲肋的板更强;矩形大开孔改变了板的应力分布,在开孔的周边容易出现失稳现象,随着开孔的增大,板的临界屈曲特征值呈线性降低,但在开孔周边布置加劲肋能有效防止开孔周边板的失稳;相同截面面积的L型加劲肋对板的约束能力比T型加劲肋强;开孔会降低板的承载力,但开孔周边适当添加加劲肋能较大程度提高加劲板的临界屈曲特征值。  相似文献   

7.
为了研究腹板开孔复杂卷边冷弯槽钢梁的局部屈曲性能,以及探究北美冷弯型钢结构设计规范(AISI S100-2016)中腹板开孔冷弯槽钢梁局部屈曲直接强度法计算公式的可靠性,对孔高比(孔洞高度与腹板高度的比值)分别为0、0.2、0.4、0.6和0.8的10个腹板开矩形孔复杂卷边冷弯槽钢梁纯弯试件进行了静力试验研究。试验结果表明,开孔和不开孔试件均发生以局部屈曲为主的屈曲破坏模式,与不开孔试件相比,开孔试件的受弯承载力下降,且下降幅度随孔高比的增大而增大。利用ANSYS有限元程序对试验进行了模拟分析,分析结果与试验结果吻合良好;在此基础上,采用经试验验证的有限元模型,通过变换腹板高度、板厚和孔高比开展了有限元参数分析,并根据有限元参数分析结果对已有腹板开孔冷弯槽钢梁的弹性局部屈曲临界应力近似计算公式进行了修正。基于试验结果、有限元参数分析结果以及修正的弹性局部屈曲临界应力近似计算公式,对AISI S100-2016中开孔冷弯槽钢梁发生以局部屈曲为主破坏时的直接强度法计算公式进行了修正。  相似文献   

8.
为研究矩形钢管混凝土壁板的屈曲后强度,根据平板的弹塑性屈曲理论并考虑残余应力的影响,确定了板件发生塑性屈曲、弹塑性屈曲和弹性屈曲的正则化界限宽厚比。采用试验验证的有限元模型进行了宽厚比为20~150、钢材屈服强度为275~960 MPa的矩形钢管混凝土壁板局部屈曲分析,以界限宽厚比为控制点,根据有限元结果拟合出了矩形钢管混凝土壁板的有效宽度计算式。研究结果表明:弹性屈曲板件的屈曲后强度提高程度显著高于弹塑性屈曲板件;屈曲后强度的提高程度与钢材屈服强度无明显相关性;与无面外约束钢板相比,混凝土的单侧约束作用可使板件的屈曲后强度普遍提高约50%;提出的矩形钢管混凝土壁板的正则化界限宽厚比和有效宽度计算式与试验结果吻合较好,有效宽度试验值比所提公式计算值平均增大7.2%,标准差为0.091。  相似文献   

9.
对连续组合梁负弯矩区钢腹板的稳定性进行了研究,分析了负弯矩区钢粱腹板在弯曲、轴向压力和剪切作用下的力学性能,提出了组合梁腹板在各种荷载作用下的局部稳定性简化计算模型,建立了非均匀受压、纯剪和弯剪复合受力状态下的临界屈曲应力计算公式;分别计算了钢梁腹板在非均匀受压和纯剪状态下的弹性屈曲系数,并根据偏心受压与剪切作用下的相关方程计算了钢梁腹板在复杂应力状态下的弹性屈曲系数;基于屈曲分析结果,提出了组合梁在弹性受力阶段钢梁腹板不设横向加劲肋的高厚比限值.结果表明:采用该方法确定的钢梁腹板高厚比更具合理性,且计算过程简单,结果偏于安全.  相似文献   

10.
畸变屈曲是冷弯薄壁卷边槽钢截面的一种主要屈曲模式,分析时应考虑截面板组间的相关作用,腹板提供给翼缘的约束作用是影响构件畸变屈曲性能的主要因素。腹板开孔后将导致应力的重分布,影响板件间的相关作用。本文在分析的过程中,以无孔构件的畸变屈曲理论为基础,应用ANSYS有限元软件对腹板开孔的冷弯薄壁卷边槽钢构件在轴心受压情况下的畸变屈曲性能进行了分析研究。讨论了孔洞横向间距、纵向间距、孔宽、孔型等参数对畸变屈曲性能的影响。除此之外,还分析了截面板件尺寸大小对截面畸变屈曲性能的影响。最后,根据有限元参数分析结果,给出了在腹板上设置孔洞时的一些建议。  相似文献   

11.
This paper focuses on the cutout-strengthening of perforated steel plates subjected to uniaxial compressive loads. The square plates considered each has a centrally placed circular hole and four simply supported edges in the out-of-plane direction. Four types of stiffeners named ringed stiffener (RS), flat stiffener (FS), longitudinal stiffener (LS) and transverse stiffener (TS) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behaviors of strengthened and unstrengthened perforated plates. The results show that the strengthened perforated plates have higher buckling strengths than those of the unstrengthened ones, while the elevations in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types (i.e., RS, FS, LS and TS) as well as plate geometric parameters (i.e., a plate slenderness ratio and a hole diameter ratio). Furthermore, comparisons of strengthening efficiency considering the variations of buckling stress with stiffener weight are carried out, and recommendations on the most efficient cutout-strengthening methods for the uniaxially compressed perforated square plates with centric circular holes are proposed.  相似文献   

12.
Although the literature contains a number of studies which have been developed to describe the non-linear behaviour of ordinary plates, few works are available on perforated plates, and studies on non-linear behaviour of perforated plates under localised symmetrical load are not studied in depth. The aim of this paper is to provide some insights into the elasto-plastic behaviour of plate girder web panels with circular holes under localised symmetrical load.Numerical analyses of square and rectangular perforated plates with centred and eccentric holes were developed. Results provide new insights into post-critical mechanisms in perforated plates subjected to localised loads when the length of the symmetrical compressive load, hole diameter and steel yield limit vary. An increase in the critical slenderness of the plate (a value at which transition from elastic to plastic collapse occurs) and a corresponding reduction in the elastic critical load occur when the dimensions of the hole increase. A further increase in the critical slenderness occurs when the length of the localised load is reduced. High-performance steel may be subject to buckling with a lower possibility of post-critical mechanisms: a reduction in critical slenderness occurs when the steel grade increases. Lastly, numerical analyses of slender and thick perforated plates were developed and their results compared.  相似文献   

13.
Khaled M. El-Sawy  Aly S. Nazmy 《Thin》2001,39(12):983-998
The Finite Element Method (FEM) has been employed to determine the elastic buckling load of uniaxially loaded rectangular perforated plates with length a and width b. Plates with simply supported edges in the out-of-plane direction and subjected to uniaxial end compression in their longitudinal direction are considered. Integer plate aspect ratios, a/b=1, 2, 3 and 4, have been chosen to assess the effect of aspect ratio on the plate buckling load. Two perforation shapes of different sizes are considered; circular, and rectangular with curved corners. The rectangular perforation is oriented such that either its long or its short side is parallel to the longitudinal direction of the plate. The center of perforation was chosen at different locations of the plate. The study shows that the buckling load of a rectangular perforated plate that could be divided into equal square panels is not the same as that of the square panel that contains the perforation when treated as a separate square plate. For rectangular plates, the study recommends not to have the center of a circular hole placed in a critical zone defined by the end half of the outer square panel, to try always to put the hole in an interior panel of the plate, and to have the distance between the edge of a circular hole and the nearest unloaded edge of the plate not less than 0.1b. The study concludes also that the use of a rectangular hole, with curved corners, with its short dimension positioned along the longitudinal direction of the plate is a better option than using a circular hole, from the plate stability point of view.  相似文献   

14.
T.M. Roberts  Z.G. Azizian 《Thin》1984,2(2):153-164
Finite element solutions for the buckling and geometrically nonlinear elasto-plastic collapse of perforated plates are presented. Triangular elements are used to model the plates and the elasto-plastic stress-strain relationships are based on Ilyushin's approximate area yield function assuming full plastification of the entire thickness of the plate for stress states on the yield surface. Solutions are presented for square plates with central square and circular holes subjected to uniaxial compression, biaxial compression and pure shear, and are shown to be in close agreement with existing approximate and semi-empirical solutions which have been verified by test results.  相似文献   

15.
This paper presents a theoretical study on the elastic local buckling of steel plates in rectangular concrete-filled steel tubular (CFT) columns with binding bars under axial compression. It is assumed that the unloaded edges of the steel plate are elastically restrained against rotation, whereas the loaded edges are clamped. Based on the energy method, the formulas for elastic local buckling strength of the steel plate in rectangular CFT columns under axial compression are derived, which are calibrated with the experimental results. Then the formulas are employed to study the elastic local buckling of steel plates in rectangular CFT columns with binding bars under axial compression. It is shown that the binding bars can increase the local buckling coefficient, which results in improvement of the capacity of the steel plate to resist local buckling. Finally, appropriate spacing of binding bars, appropriate limitation for aspect ratio and corresponding appropriate limitation for width-thickness ratio are suggested for rectangular CFT columns with binding bars under axial compression.  相似文献   

16.
In this work, linear buckling and the non-linear behaviour of steel plates with one perforation subjected to shear loading was studied. The influence of the dimension, position with respect to the two main axes, shape (circular or rectangular) and orientation of a hole with respect to the panel slenderness and aspect ratio were all investigated.In both circular and rectangular holes, the strong influence of hole dimensions on the shear buckling coefficient was observed, and the values of the shear buckling coefficient fell with the plate aspect ratio. Small differences in buckling coefficients were noted in rectangular plates with various hole diameters, and buckling coefficients were practically not influenced by the orientation of the rectangular hole. In both rectangular and circular holes, the coefficient remained constant, regardless of hole position for a given distance from the edge.Linear buckling and non-linear behaviour were compared by observing different shear failure modes for slender and thick perforated plates. Elastic and plastic regions were found, on the basis of critical slenderness, for some common geometries.  相似文献   

17.
Cristopher D. Moen  B.W. Schafer 《Thin》2008,46(10):1164-1182
The objective of this paper is to observe and quantify the relationship between elastic buckling and the tested response of cold-formed steel columns with holes. Compression tests were conducted on 24 short and intermediate length cold-formed steel columns with and without slotted web holes. For each specimen, a shell finite element eigenbuckling analysis was also conducted such that the influence of the boundary conditions and the hole on local, distortional, and global elastic buckling response could also be captured. Slotted web holes may modify the local and distortional elastic buckling half-wavelengths, and may also change the critical elastic buckling loads. Experimentally, slotted web holes are shown to have a minimal influence on the tested ultimate strength in the specimens considered, although post-peak ductility is decreased in some cases. Tangible connections are observed between elastic buckling and load–displacement response during the tests, including mode switching between local and distortional buckling. The columns are tested with friction-bearing boundary conditions where the columns ends are milled flat and parallel, and bear directly on steel platens. These boundary conditions, which greatly speed specimen preparation, are determined to be viable for evaluating the tested response of short and intermediate length columns, although the post-peak response of intermediate length specimens must be considered with care.  相似文献   

18.
分析研究了开孔冷弯型钢柱的弹性屈曲和试验响应间的关系。对24个腹板开孔和不开孔的短柱和柱进行了压力试验。利用壳单元建模,对每一个构件都进行了有限元屈曲分析,从而可以获取边界条件、局部开孔、扭曲和整体弹性屈曲反应对构件的影响。腹板上的开孔,可能影响构件局部和扭转屈曲的半波长度,同时可能会导致临界弹性屈曲荷载的改变。从试验结果分析可知,尽管在某些试验中出现了延性下降等现象,但总体而言,腹板开孔对试验构件的极限强度影响很小;同时发现,在局部和扭转屈曲中,弹性屈曲也与荷载-位移曲线有关。试验中对柱子采用摩擦轴承的边界条件,其中柱端磨平且直接由钢板传力。尽管构件的延性等问题还需要更进一步研究,但这种边界条件对于评估短柱和普通柱屈曲性能是有效的,而且还可以缩短试验构件的准备时间。  相似文献   

19.
An FEM analysis is made on the elastic buckling of plates, each of which has a hole and is subjected to tensile loading.In a general way, no attention is paid to the buckling of plates if they are subjected to a tensile load. However, when a plate has a hole, compressive stresses appear near the hole under a tensile load, and the stress may cause local buckling of the plate.In this paper, stress distributions and buckling behaviours of such plates under tension are studied. Aspect ratios, shapes of holes and so on, are adopted as parameters.Through the analysis, variations of buckling coefficients and buckling modes against aspect ratios are obtained. The effects of the hole shapes on the buckling strength are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号