首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用聚丙烯酰胺凝胶法,分别以氧氯化锆、硫酸锆和硝酸氧锆为锆源制备ZrO2纳米粉体,利用热重-差热同步分析仪(TG-DSC)、X射线衍射仪(XRD)和扫描电子显微镜(SEM) 分别对凝胶的热分解过程及氧化锆粉体的物相组成和形貌进行分析和表征,研究了不同锆源对聚丙烯酰胺凝胶法所制备的ZrO2纳米粉体相转变、物相组成及粉体形貌的影响。结果表明,锆盐影响聚丙烯酰胺凝胶的热分解完全温度,以硝酸氧锆为前驱体制得的凝胶热分解完全温度最低,约为530 ℃,以硫酸锆和氧氯化锆为前驱体制得的凝胶热分解完全温度分别为573 ℃和580 ℃。锆盐影响氧化锆的晶化温度,但氧化锆的相转变过程相似,均是由无定型氧化锆转变为四方相氧化锆,并在900 ℃时完全转变为单斜相氧化锆。氧化锆的晶化温度越高,平均粒径越小,团聚程度越高,以上述三种锆源为前驱体均可制备出近似球形的纳米氧化锆粉体,粉体粒径分布在52~97.4 nm范围内。  相似文献   

2.
以含锆、钇、钛的化合物为起始原料,采用共沉淀法制备了组成均匀的纳米ZrO2(3Y)-TiO2复合粉体.用氨气为氮化剂,在一定的氮化条件下,进行原位选择氮化反应.对不同氮化温度、氮化时间合成的复合粉体用X射线衍射(XRD)、透射电子显微镜(TEM)、场发射扫描电镜(FESEM)等方法进行了表征.研究了氮化温度、氮化时间对合成复合粉体性能的影响.结果表明在800℃~1 450℃氮化5 h,复合粉体中的TiO2氮化成为TiN,t-ZrO2未被氮化,从而制得1种氮化钛均匀分散于四方氧化锆中的纳米t-ZrO2-TiN复合粉体,复合粉体的粒径在纳米尺度范围.  相似文献   

3.
以硝酸氧锆和钼酸铵等为原料,采用水热法合成了超细立方相ZrMO2O8粉体.分别采用XRD,FT-IR及SEM对前驱体及所得产物的结构及形貌进行了分析和表征.结果表明采用水热法可以快速(15 h)合成出单一纯净的超细立方相ZrMO2O8粉体,颗粒尺寸约为100 nm×500 nm,所得粉体具有优异的负热膨胀特性,在室温~400℃温度范围内,其热膨胀系数为-5.185×10-6K-1,适合工业化生产.  相似文献   

4.
水热法合成和表征有序排列BiFeO3纳米线   总被引:1,自引:0,他引:1  
以硝酸铋和氯化铁为原料,NaOH为矿化剂,水热条件下制备了有序排列BiFeO3纳米线。利用透射电子显微镜(TEM)、高分辨透射电镜(HRTEM)和X射线衍射仪(XRD)对样品进行了表征。研究了矿化剂浓度和反应温度对产物结构和形貌的影响,结果表明在160-180℃制备了有序排列的BiFe03纳米线,纳米线的直径为50~100nm,长为200-500nm。  相似文献   

5.
纳米微乳液法制备球形氧化锆粉体及其致密化行为   总被引:6,自引:0,他引:6  
以水/环己烷/曲拉通-100/正己醇四元油包水微乳体系中的微乳液滴为纳米微反应器,通过分别增溶在微反应器中的氧氯化锆和沉淀剂(氨水)发生反应,可以制备出粒径分布均匀、球形度较好的纳米级超细氧化锆粉体。实验中采用粒度分析仪,XRD,SEM,TEM,比表面仪等对获得的粉体进行了表征,利用高温综合热分析仪分析了粉体的致密化行为,发现在烧结致密化过程中,无定型态的粉体于475℃左右结晶成为四方相的氧化锆,在1080℃~1280℃范围内完成致密化收缩。干压成型的坯体在1400℃,2h下烧结相对密度达98%以上,烧结体晶相为100%的四方相。  相似文献   

6.
微乳液法制备球形氧化锆粉体及其表面特性   总被引:1,自引:0,他引:1  
以水/环己烷/曲拉通-100/正己醇四元油包水微乳体系中的微乳液滴为纳米微反应器,通过微反应器中增溶的锆盐和沉淀剂发生反应,可以制备出基本无团聚、球形度较好的纳米级氧化锆粉体,粉体粒径为30 nm~40 nm且呈单峰分布.通过对粉体进行红外光谱分析、Zeta电位分析以及流变分析,发现粉体表面的特性随煅烧温度的升高而改善.  相似文献   

7.
以Fe2O3粉、Si粉和Al粉为原料,采用反应机械合金化/退火法制备出了Al2O3/Fe3Si纳米复合粉体。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对复合粉体球磨以及退火过程中的固态反应过程、表面形貌进行表征。研究表明,Fe2O3-Si-Al混合粉体球磨5 h后发生反应生成Al2 O3、Fe5 Si3、Fe3 Si、FeSi,球磨20 h后生成Al2 O3/Fe3 Si,球磨20 h的粉体在900℃条件下退火1 h的组成物相未发生变化,复合粉体颗粒呈球形,其尺寸为5μm左右,分布均匀,组成相Al2O3和Fe3Si的晶粒尺寸分别为26.6 nm和28.3 nm。  相似文献   

8.
以钛酸四丁酯、醋酸铅、氧氯化锆为主要原料,以自制的表面活性剂2-十一烷基-1-二硫脲乙基咪唑啉季铵盐(SUDEI)为表面修饰剂,以乙二醇做溶剂,制备出PZT溶胶,并将其作为前躯体,进行微波处理。对本实验制得的PZT样品用扫描电子显微镜观察PZT粉体的形貌和分散状况,用TG表征样品的热行为,用XRD分析确定其晶型,用EDS确定了样品的表面成分组成。实验数据表明以该方法制备的粉为粒度均匀,分散性好的纳米级PZT粉体,粒径尺寸为50~70nm。  相似文献   

9.
低温燃烧/水热法制备纳米羟基磷灰石的研究   总被引:1,自引:0,他引:1  
以Ca(NO3)2·4H2O,(NH4)2HPO4和柠檬酸为主要原料,浓硝酸为溶剂,NH4NO3为助燃剂,根据羟基磷灰石的化学组成及推进燃烧化学理论计算原料的配比,采用低温燃烧(LCS)/水热法快速制备出纳米羟基磷灰石粉体.利用XRD和扫描电子显微镜对燃烧产物和经水热处理后的粉体相组成及颗粒形貌进行了研究.结果表明,Ca(NO3)2·4H2O,(NH4)2HPO4及柠檬酸的最佳摩尔比为532.2,低温燃烧法制备的前驱体粉末,主晶相为纳米级的HAP,经水热处理1 h后即可得到高纯度的粒度为40 nm~80 nm的HAP粉末.水热处理2 h后HAP的结晶度提高,颗粒形状以柱状为主,颗粒直径50nm~80nm,长度100 nm~130nm.  相似文献   

10.
采用水/环己烷/Triton X-100/正己醇四元油包水体系,通过微乳液法制备了纳米ZrO2粉体,用XRD、TEM、TG-DTA等对所制备的纳米粉体进行了表征,并重点研究了体系中增溶的锆盐溶液浓度对ZrO2纳米粒子结构与性能的影响。结果表明,本方法所制备的纳米单斜相ZrO2粉体,其晶粒尺寸可控制在15nm左右;在479℃左右,纳米粉体由无定形转变为晶相;在较低的煅烧温度下,所合成的氧化锆粒子中同时存在着单斜相和四方相两种晶粒,随着煅烧温度的提高,部分四方相会转变为单斜相,到煅烧温度为800℃时,几乎全部转化为单斜相;随着锆盐浓度的增加,所合成粉体的晶型没有太大的变化,均为单斜相,但是晶体结构的完整性略有不同;随着锆盐浓度的增加,所合成粉体的晶粒尺寸有所增大,团聚现象亦有所加重。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号