首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
In commercial networks,user nodes operating on batteries are assumed to be selfish to consume their energy solely to maximize their own benefits,e.g.,data rates.In this paper,we propose a bargaining game to perform the power allocation for the selfish cooperative communication networks.In our system,two partner nodes can act as a source as well as a relay for each other,and each node is with an energy constraint to transmit one frame.Consider a selfish node is willing to seek cooperative transmission only if the data rate achieved through cooperation will not lower than that achieved through noncooperation by using the same amount of energy.The energy-efficient power allocation problem can be modeled as a cooperative game.We proved that there exists a unique Nash bargaining solution (NBS) for the game by verifying that the game is indeed a bargaining problem.Thus,the two objectives,i.e.,system efficiency and user fairness specified in the selfish networks can be achieved.Simulation results show that the NBS scheme is efficient in that the performance loss of the NBS scheme to that of the maximal overall rate scheme is small while the maximal-rate scheme is unfair.The simulation results also show that the NBS result is fair in that both nodes could experience better performance than they work independently and the degree of cooperation of a node only depends on how much contribution its partner can make to improve its own performance.  相似文献   

2.
    
Wireless cooperative communications require appropriate power allocation (PA) between the source and relay nodes. In selfish cooperative communication networks, two partner user nodes could help relaying information for each other, but each user node has the incentive to consume his power solely to decrease its own symbol error rate (SER) at the receiver. In this paper, we propose a fair and efficient PA scheme for the decode-and-forward cooperation protocol in selfish cooperative relay networks. We formulate this PA problem as a two-user cooperative bargaining game, and use Nash bargaining solution (NBS) to achieve a win-win strategy for both partner users. Simulation results indicate that the NBS is fair in that the degree of cooperation of a user only depends on how much contribution its partner can make to decrease its SER at the receiver, and efficient in the sense that the SER performance of both users could be improved through the game.  相似文献   

3.
    
This paper proposes a bargaining game theoretic resource(including the subcarrier and the power) allocation scheme for wireless orthogonal frequency division multiple access(OFDMA) networks.We define a wireless user s payoff as a function of the achieved data-rate.The fairness resource allocation problem can then be modeled as a cooperative bargaining game.The objective of the game is to maximize the aggregate payoffs for the users.To search for the Nash bargaining solution(NBS) of the game,a suboptimal subcarrier allocation is performed by assuming an equal power allocation.Thereafter,an optimal power allocation is performed to maximize the sum payoff for the users.By comparing with the max-rate and the max-min algorithms,simulation results show that the proposed game could achieve a good tradeoff between the user fairness and the overall system performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号