首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
连续SiC纤维增强钛基复合材料横向强度分析   总被引:1,自引:0,他引:1  
连续SiC纤维增强钛基复合材料(SiCf/Ti)具有良好的综合性能,但其横向性能低于钛合金基体,为了准确地预测SiCf/Ti复合材料的横向强度,提出一种基于界面脱粘强度的计算模型。采用SiCf/Ti复合材料十字拉伸试件来测试复合材料的纤维/基体界面脱粘强度,并分析了热处理工艺对界面脱粘强度影响规律,以及不同纤维之间界面脱粘强度的差别。复合材料横向拉伸试件采用箔-纤维-箔方法制备,每个试件的纤维层数为10层,纤维百分数为30%左右。在不同温度条件下测试复合材料的横向拉伸强度,拉伸温度分别为室温、300,400,550℃,通过对比实验结果和模型预测结果,模型预测的结果与实验结果的误差不超过5%。  相似文献   

2.
以短切碳纤维(Cf)和碳化硅纤维(SiCf)为增强相,并用化学气相渗透法对部分纤维进行炭涂层处理,采用热压法制备了4种纤维增强MoSi2基复合材料(SiCf-MoSi2、SiCf/C-MoSi2、Cf-MoSi2和Cf/C-MoSi2),研究了纤维类型及表面炭涂层对MoSi2基复合材料弯曲性能的影响.结果表明纤维的加入明显提高了MoSi2的抗弯强度,加入5%SiCf和5%Cf的复合材料的强度比纯MoSi2分别提高了9.0%和22.8%,Cf增强作用明显优于SiCf;纤维类型相同时,具有炭涂层的纤维增强效果更显著,5%Cf/C-MoSi2复合材料的强度最高,达到了364.7MPa,比纯MoSi2的强度提高了30%;扫描电镜分析表明,无炭涂层的SiCf与MoSi2基体间存在着明显的裂缝,炭涂层改变了纤维与基体的界面结合;有涂层纤维的断裂机制为首先脱粘然后拔出.  相似文献   

3.
采用磁控溅射先驱丝法和热等静压工艺制备SiCf/TC11复合材料,研究了SiCf/TC11复合材料室温和500℃拉伸性能及断裂机制。结果表明,SiCf/TC11复合材料室温和500℃抗拉强度分别为1 530 MPa和1 553 MPa,明显高于基体TC11钛合金,与TC11钛合金相比,抗拉强度分别提升了~57%和~133%,纤维增强效果显著。通过观察SiCf/TC11复合材料室温、500℃拉伸断口和纵剖面断裂特征,指出了室温和500℃拉伸断裂机制主要包括反应层多次断裂、纤维一次断裂、纤维多次断裂、纤维-基体界面脱粘、纤维拔出、W芯-SiC界面脱粘、基体断裂、包套断裂等,揭示了SiCf/TC11复合材料室温和500℃拉伸载荷下多组元失效断裂过程。  相似文献   

4.
以不同酚醛树脂制备的C/C-SiC复合材料的力学性能   总被引:1,自引:1,他引:0  
选用热固性酚醛树脂A和热塑性酚醛树脂B分别与短炭纤维、石墨粉、硅粉、碳化硅按一定比例混合后,采用温压-原位反应法,制得具有不同树脂炭基体的C/C-SiC复合材料的试样1和2,并对其力学性能进行研究,以期优化该复合材料的成分配方和进一步提高其技术性能。结果显示:试样1在垂直于纤维层方向的压缩载荷及弯曲载荷作用下,未出现纤维拔出、脱粘等现象,界面结合较强,呈现脆性断裂,压缩强度σ⊥=60.7MPa,弯曲强度σb=34.5MPa;而在平行于纤维层的压缩载荷作用下,纤维与基体存在剪切作用,出现纤维脱粘,呈现韧性断裂,σ∥=52.6MPa。试样2由于纤维的分散性不好,大量聚集在一起,在压缩和弯曲载荷作用下,均存在纤维的拔出和脱粘现象,界面结合较差,材料呈现韧性断裂,强度较低,σ⊥=45.8MPa,σ∥=19.4MPa,σb=16.1MPa。  相似文献   

5.
通过箔-纤维-箔法制备了SiC纤维增强TB8复合材料,采用光学电子显微镜(OM)、扫描电镜(SEM)和电子探针(EPMA)对复合材料的微观组织进行表征与分析,研究了真空热压复合时压力、温度和时间等工艺参数对SiC纤维增强TB8复合材料微观组织的影响规律。结果表明:压力显著地影响着复合材料基体与基体以及纤维与基体的结合,而温度对纤维基体界面反应情况影响较大。通过热压工艺的优化,可以有效控制界面反应层厚度,获得组织优良的SiCf/ TB8复合材料。  相似文献   

6.
利用挤压铸造制备氧化铝/锌合金复合材料,在扫描电镜(SEM)上观察复合材料的界面。在复合材料中纤维与基体间存在致密界面层,合金元素通过适当的化学反应可改善纤维与基体间的结合,在凝固过程中,纤维/基体界面上的硅在共晶体的生长过程中起到领先作用,导致复合材料的共晶转变是由铝硅共晶转变和锌铝共晶转变两者组成。  相似文献   

7.
采用粉末冶金法制备SiC颗粒增强工业纯Al基复合材料,研究混料时间和挤压对复合材料显微组织和力学性能的影响。研究表明:机械混粉过程存在最佳的混料时间,混料时间为16 h时SiC颗粒分布均匀,复合材料的密度高、力学性能好。挤压可以改善复合材料的界面结合强度、减少孔洞的数量,从而提高材料的致密度和力学性能。烧结态复合材料的断裂机制以基体的脆性断裂以及增强相与基体的界面脱粘为主。挤压态复合材料的断裂以基体的韧性断裂以及SiC颗粒的脆性断裂为主,伴随着少量的基体与SiC颗粒的界面脱粘。  相似文献   

8.
粉末冶金制备Ti C_p/Fe复合材料时易发生界面反应,对其性能产生影响。对制备的Ti C_p/Fe复合材料的显微组织、物相组成等进行测试,应用热力学原理对界面反应中的热力学过程进行分析,探明复合材料发生界面反应时的烧结温度和保温时间。结果表明:通过热力学计算,增强体Ti C和基体Fe的界面反应临界温度为1 270℃;实验中,当保温时间为2 h、烧结温度超过1 300℃时,或在1 300℃下保温时间超过2 h,增强体Ti C和基体Fe会发生界面反应;界面反应产生了呈针状的新物质(Ti_8C_5和Fe_2C),影响了增强体和基体的结合强度,导致了复合材料性能的下降。  相似文献   

9.
通过密炼?注塑成型工艺制备了不同苎麻纤维含量的聚乳酸基复合材料,研究了纤维含量对复合材料性能的影响规律,并揭示了纤维增强机理。研究表明,苎麻纤维的添加提高了复合材料的耐热性能,尤其是当纤维质量分数为40%时,复合材料的热变形温度提高了10.5%。此外,苎麻纤维均匀地分散在基体中,由于纤维与聚乳酸的界面强度较弱,断面上有大量的纤维拔出和纤维孔洞;差示扫描量热仪测试表明高含量的纤维限制了聚乳酸分子链的运动,促进复合材料形成更加致密完善的晶核;同时,流变行为也表明苎麻纤维含量的增加有助于提高复合材料的黏弹响应和复合黏度;最后,苎麻纤维的加入提高了复合材料的拉伸和弯曲强度,且随纤维含量的增加而增大。与聚乳酸相比,当纤维质量分数为40%时复合材料的拉伸和弯曲强度分别提高了30%和21.9%。   相似文献   

10.
采用湿成型法成功制备了比重差别大的WO3颗粒(WO3p)和硼酸铝晶须(ABOw)混杂预制块,用挤压铸造法制备混杂铝基复合材料。混杂复合材料中含(原子分数)5%WO3p和20%ABOw,不同大小的WO3p尺寸分别为18和3μm。采用扫描电镜(SEM)和万能拉伸试验机对制备的混杂复合材料试样进行微观组织观察和拉伸性能测试。复合材料组织观察表明,WO3p和ABOw在基体中随机、均匀地分布,在高倍照片中可以观察到大尺寸WO3p存在裂纹,铝液不能渗入到裂纹中。力学性能研究结果表明,尺寸较小的颗粒增强的复合材料具有高的抗拉强度和断裂延伸率;含大尺寸WO3p的混杂复合材料的抗拉强度、屈服强度和断裂延伸率分别为266.8,197.3 MPa和1.16%,含小尺寸WO3p的混杂复合材料的抗拉强度、屈服强度和延伸率分别为290.3,180.5 MPa和1.37%。复合材料拉伸断口形貌观察表明,两种不同WO3p尺寸的混杂复合材料断裂机制有所不同,大颗粒增强复合材料中大颗粒发生断裂,裂纹穿过颗粒扩展,晶须与界面脱粘;小颗粒增强复合材料中小颗粒与基体界面脱粘以及晶须与界面脱粘,但晶须脱粘数量明显减少,晶须拔出数量增多。  相似文献   

11.
何贵玉  张太贤 《稀有金属》1996,20(5):348-352
研究了复合软质过渡层对钛纤维增强Ti-Al基复合材料界面和性能的影响。结果表明,在增强体与基体间增加复合软质过渡层Y2O3-Cr等的钛纤维增强Ti-Al基复合材料,其界面有Ti3Al、Ti2Al、Ti2Cu及β相产生,界面结合完整。复合界面的弯曲强度达709MPa,较涂覆单一Y2O3的钛纤维增强Ti-Al基复合材料提高26%,弯曲挠度提高较小。增加复合软质过渡层有利于钛纤维增强Ti-Al基复合材料  相似文献   

12.
利用TC4,Al廉价材料,通过磁控溅射物理气相沉积技术制备SiC先驱丝,利用热等静压工艺,在温度1423 K,压力170 MPa条件下进行复合,反应时间为1 h,通过原位反应生成Ti3Al基体,从而制备SiC纤维增强Ti3Al基复合材料。通过扫描电镜(SEM)和能谱分析(EDS)观察SiC纤维增强Ti3Al基复合材料基体与界面的微观组织形貌及界面元素分布,利用透射电镜(TEM)分析复合材料基体的物相结构,并对SiC纤维增强Ti3Al基复合材料的界面反应进行动力学分析。结果表明,利用TC4,Al制备的SiC先驱丝,通过原位反应可生成Ti3Al基体,属于六方晶系,组织为等轴晶,晶粒尺寸约为1μm。通过磁控溅射和热等静压工艺制备SiC纤维增强Ti3Al基复合材料,可缩短工艺流程,节约成本。根据SiC纤维增强Ti3Al基复合材料界面反应层生长动力学分析,得到界面反应层生长动力学方程:δ=2.73×10-6exp(-257.09×103/RT)t1/2,可准确预测连续碳化硅纤维增强Ti3Al基复合材料在制备和使用过程中界面反应层的生长规律,为其应用提供理论依据。  相似文献   

13.
界面改性对SiCp/Cu复合材料力学性能的影响   总被引:2,自引:0,他引:2  
研究了界面改性对SiC颗粒增强Cu基复合材料力学性能和断裂机制的影响。结果表明:经过SiC颗粒表面涂层处理后,可在复合材料中获得干净、紧密的界面结合。通过复合材料界面优化,可在基体和增强物之间有效传递载荷,减少了拉伸变形时的界面脱粘,从而提高了复合材料的屈服强度、抗拉强度和断裂延伸率。  相似文献   

14.
研究了复合软质过渡层对钛纤维增强Ti-Al基复合材料界面和性能的影响。结果表明,在增强体与基体间增加复合软质过渡层Y2O3-Cr等的钛纤维增强Ti-Al基复合材料,其界面有Ti3Al、Ti2Al、Ti2Cu及β相产生,界面结合完整。复合界面的弯曲强度达709MPa,较涂覆单一Y2O3的钛纤维增强Ti-Al基复合材料提高26%,弯曲挠度提高较小。增加复合软质过渡层有利于钛纤维增强Ti-Al基复合材料的强韧化  相似文献   

15.
以SiC纤维、Ti箔、Ti_2AlNb箔为原材料,采用箔-纤维-箔方法,通过真空热压技术制备了SiCf/Ti/Ti_2AlNb叠层复合材料。利用扫描电子显微镜(SEM)、能谱分析仪(EDS)和X射线衍射仪(XRD)对复合材料相组成和微观组织进行了分析。结果表明,当真空热制造参数为920℃/40 MPa/30 min时,SiC纤维与韧性金属Ti实现良好冶金结合,界面反应产物主要为TiC,界面反应层厚度为0.8μm,C涂层厚度为1.3μm;韧性金属Ti层与金属间化合物Ti_2AlNb层通过Ti,Al,Nb 3种元素相互扩散方式形成固相扩散连接,界面平直,复合材料呈现出理想叠层结构。制备态的SiCf/Ti/Ti_2AlNb叠层复合材料主要由α-Ti,β-Ti,SiC,TiC,O相和B2相构成。在Ti与Ti_2AlNb固相扩散连接过程中,由于Al原子的扩散速率大于Nb原子,且Al是α稳定元素,Nb是β稳定元素,从而导致在Ti/Ti_2AlNb界面区域依次形成α+β双相组织和富B2相。在真空热压实验中,韧性金属Ti层与金属间化合物Ti_2AlNb层固相扩散连接过程依次为:物理接触/α+β双相区形成/富B2相区形成/富B2相区增厚。  相似文献   

16.
李刚  严彪  黄剑 《上海钢研》2004,(3):37-40
本文采用球磨/热压工艺制备了Ni-Ti长纤维增强镁基复合材料。将镁合金切屑在无水乙醇的保护下进行球磨,XRD分析显示镁合金粉末经过球磨没有被氧化。热压后的NiTi纤维增强镁基复合材料密度十分接近镁合金铸态的密度值,经过球磨工艺的复合材料硬度明显提高。复合材料经OM和SEM分析发现基体组织均匀。纤维/基体界面结合较好。  相似文献   

17.
研究了粉末冶金法制备的15%SiCp/2009A1复合材料挤压棒材的断裂韧性,探讨了不同试样取向对复合材料断裂韧性的影响.结果表明:L-R取向的紧凑拉伸试样的KIC明显高于R-L取向和C-R取向.断口形貌观察表明:L-R取向的复合材料试样,断裂以SiC颗粒解理开裂为主.较少出现大面积的基体合金撕裂,没有出现SiCp/基体合金界面脱粘的现象.SiC颗粒的大量断裂以及高的界面结合强度会引起复合材料断裂韧性的提高.  相似文献   

18.
将T700或Nicalon-SiC短纤维、碳粉、硅粉和少量碳化硅粉混合,在1900℃热压烧结制备短纤维增强C-SiC复合材料,并对其组织、结构及性能进行了研究。结果表明:SiCf/C-SiC的相对密度和室温强度分别为95.3%和24.38MPa,均高于Cf/C-SiC的相对密度和室温强度,热压烧结过程中Cf的损伤严重。短纤雄增强C-SiC复合材料中,由于C相和SiC相的同时存在,在同一温度下的氧化行为表现为在氧化初期氧化质量损失率较大,C相的氧化起主要作用;随氧化时间的增长,氧化质量损失率逐渐减小;在氧化后期则质量增加,SiC相的惰性氧化起主要作用。SiCf/C-SiC复合材料的抗氧化性能优于Cf/C-SiC复合材料的抗氧化性能。SiCf/C-SiC复合材料在温度为1100℃~1400℃时,温度越高,氧化质量损失率越小,抗氧化性能越强。  相似文献   

19.
钛纤维强化Ti-48Al-2Cr-2Nb合金复合材料性能与界面研究   总被引:1,自引:0,他引:1  
用物理气相沉积法在钛纤维表面蒸镀一层厚约2.5μm的Y2O3涂层,用真空热压工艺制备钛纤维强化Ti-48Al-2Cr-2Nb钛铝化合物基复合材料。对该复合材料的力学性能、界面、组织进行了研究。结果表明:钛纤维强化Ti-48Al-2Cr-2Nb合金复合材料的弯曲强度较基体Ti-48Al-2Cr-2Nb合金提高了15%,但弯曲挠度和弹性模量变化不大。靠近界面基体组织出现片层化倾向,纤维损耗严重,其界面反应厚度约20μm。  相似文献   

20.
通过箔-纤维-箔法制备了SiC纤维增强TB8复合材料,采用光学电子显微镜(OM)、扫描电镜(SEM)和电子探针(EPMA)对复合材料的微观组织进行表征与分析,研究了真空热压复合时压力、温度和时间工艺参数对SiC纤维增强TB8复合材料微观组织的影响规律。结果表明:压力对复合材料基体与基体以及纤维与基体的结合有着显著影响,而温度对纤维与基体界面反应层影响较大。通过热压工艺的优化,可以有效控制界面反应层厚度,获得组织优良的SiC f/TB8复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号