首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends.  相似文献   

2.
An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8% and 16% (by vol.) n-butanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, water-cooled, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors’ laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two butanol/diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), is a very promising bio-fuel for diesel engines. The differing physical and chemical properties of n-butanol against those for the diesel fuel, aided by sample cylinder pressure and heat release rate diagrams, are used to interpret the observed engine behavior.  相似文献   

3.
Lei Zhu  C.S. Cheung  W.G. Zhang 《Fuel》2011,90(5):1743-1750
In this study, Euro V diesel fuel, biodiesel, and ethanol-biodiesel blends (BE) were tested in a 4-cylinder direct-injection diesel engine to investigate the combustion, performance and emission characteristics of the engine under five engine loads at the maximum torque engine speed of 1800 rpm. The results indicate that when compared with biodiesel, the combustion characteristics of ethanol-biodiesel blends changed; the engine performance has improved slightly with 5% ethanol in biodiesel (BE5). In comparison with Euro V diesel fuel, the biodiesel and BE blends have higher brake thermal efficiency. On the whole, compared with Euro V diesel fuel, the BE blends could lead to reduction of both NOx and particulate emissions of the diesel engine. The effectiveness of NOx and particulate reductions increases with increasing ethanol in the blends. With high percentage of ethanol in the BE blends, the HC, CO emissions could increase. But the use of BE5 could reduce the HC and CO emissions as well.  相似文献   

4.
Yi Ren  Haiyan Miao  Yage Di  Deming Jiang  Ke Zeng  Bing Liu  Xibin Wang 《Fuel》2008,87(12):2691-2697
Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends were investigated. The results show that there exist the different behaviors in the combustion between the diesel-diglyme blends and the other five diesel-oxygenate blends as the diglyme has the higher cetane number than that of diesel fuel while the other five oxygenates have the lower cetane number than that of diesel fuel. The smoke concentration decreases regardless of the types of oxygenate additives, and the smoke decreases with the increase of the oxygen mass fraction in the blends without increasing the NOx and engine thermal efficiency. The reduction of smoke is strongly related to the oxygen-content of blends. CO and HC concentrations decrease with the increase of oxygen mass fraction in the blends. Unlike conventional diesel engines fueled with pure diesel fuel, engine operating on the diesel-oxygenate blends presents a flat NOx/Smoke tradeoff curve versus oxygen mass fraction.  相似文献   

5.
S. Szwaja  J.D. Naber 《Fuel》2010,89(7):1573-1582
Alcohols, because of their potential to be produced from renewable sources and because of their high quality characteristics for spark-ignition (SI) engines, are considered quality fuels which can be blended with fossil-based gasoline for use in internal combustion engines. They enable the transformation of our energy basis in transportation to reduce dependence on fossil fuels as an energy source for vehicles. The research presented in this work is focused on applying n-butanol as a blending agent additive to gasoline to reduce the fossil part in the fuel mixture and in this way to reduce life cycle CO2 emissions. The impact on combustion processes in a spark-ignited internal combustion engine is also detailed. Blends of n-butanol to gasoline with ratios of 0%, 20%, and 60% in addition to near n-butanol have been studied in a single cylinder cooperative fuels research engine (CFR) SI engine with variable compression ratio manufactured by Waukesha Engine Company. The engine is modified to provide air control and port fuel injection. Engine control and monitoring was performed using a target-based rapid-prototyping system with electronic sensors and actuators installed on the engine [1]. A real-time combustion analysis system was applied for data acquisition and online analysis of combustion quantities. Tests were performed under stoichiometric air-to-fuel ratios, fixed engine torque, and compression ratios of 8:1 and 10:1 with spark timing sweeps from 18° to 4° before top dead center (BTDC). On the basis of the experimental data, combustion characteristics for these fuels have been determined as follows: mass fraction burned (MFB) profile, rate of MFB, combustion duration and location of 50% MFB. Analysis of these data gives conclusions about combustion phasing for optimal spark timing for maximum break torque (MBT) and normalized rate for heat release. Additionally, susceptibility of 20% and 60% butanol-gasoline blends on combustion knock was investigated. Simultaneously, comparison between these fuels and pure gasoline in the above areas was investigated. Finally, on the basis of these conclusions, characteristic of these fuel blends as substitutes of gasoline for a series production engine were discussed.  相似文献   

6.
S. Hossainpour  A.R. Binesh 《Fuel》2009,88(5):799-805
In the last decade 3D-CFD has been successfully established for the simulation of IC-engine fuel spray formation and propagation processes. The accuracy of the calculation results, however, strongly depends on the models adopted for simulation of the primary and secondary atomization processes. Hence, careful validations of the individual models serve as major prerequisites for the successful analysis and optimization of high-pressure sprays in diesel engines. In the present work, a CFD code has been used to study the detailed modeling of spray and mixture formation in a caterpillar heavy-duty diesel engine. With respect to the liquid-phase, spray calculations are based on a statistical method referred to as the Discrete Droplet Method (DDM). This paper presents a comparison of four Lagrangian fuel spray breakup models that are in use with commercial softwares in diesel engine simulation. In this paper, we tried to highlight this models prediction difference for sample case, compare their result and explain some possible reasons for differences. The predicted results are validated by comparing with existing experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions collected with the present work.  相似文献   

7.
Measurements of the adiabatic laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures are reported. Non-stretched flames were stabilized on a perforated plate burner at 1 atm. The Heat Flux method was used to determine burning velocities under conditions when the net heat loss from the flame to the burner is zero. Initial temperatures of the gas mixtures with air were 298 and 338 K. Uncertainties of the measurements were analyzed and assessed experimentally. The overall accuracy of the burning velocities was estimated to be better than ±1 cm/s. These new measurements were compared with the literature data when available. Experimental results in lean ethanol + air mixtures are systematically higher than previous measurements under similar conditions. Good agreement for n-heptane + air flames and for iso-octane + air flames was found with the experiments performed in counter-flow twin flames with linear extrapolation to zero stretch.  相似文献   

8.
An experimental study is conducted to evaluate the effects of using neat cottonseed oil or its neat ME (methyl ester) bio-diesel, on the combustion behavior of a standard, high speed, direct injection (HSDI), ‘Hydra’ diesel engine located at the authors’ laboratory. Combustion chamber and fuel injection pressure diagrams are obtained at medium and high load using a developed, high-speed, data acquisition and processing system. A heat release analysis of the experimentally obtained cylinder pressure diagrams is developed and used. Plots of histories in the combustion chamber of the heat release rate and other related parameters reveal some interesting features, which shed light into the combustion mechanism when using these bio-fuels. These results, combined with the differing physical and chemical properties of the bio-fuels between themselves and against those for the diesel fuel, which constitutes the baseline fuel, aid the correct interpretation of the observed engine behavior performance- and emissions-wise. Moreover, the possible existence of cyclic (combustion) variability is examined as reflected in the pressure indicator diagrams, by analyzing for the maximum pressure and its rate, and the dynamic injection timing and ignition delay, by using statistical analysis for averages, standard deviations and probability density functions. The key results are that with the use of these bio-fuels against the neat diesel fuel case, the ignition delay is hardly affected, the fuel injection pressure diagrams are very slightly advanced accompanied with higher injection pressures, maximum cylinder pressures remain the same with the vegetable oil and slightly increased with the bio-diesel, maximum cylinder pressure rates are increased with the bio-diesel and decreased with the vegetable oil, while the cyclic irregularity is not affected with these bio-fuels remaining at the acceptable neat diesel fuel case levels.  相似文献   

9.
Wanhua Su  Haozhong Huang 《Fuel》2005,84(9):1029-1040
A new reduced chemical kinetic model for the Homogeneous Charge Compression Ignition (HCCI) combustion of n-heptane in an engine has been developed. The new model is based on two previous reduced kinetic models for alkane oxidation, from which some reactions have been eliminated and with enhanced treatment of the oxidization of CO and CH3O. The kinetic parameters of the key reactions in the new model were adjusted by using a genetic algorithm optimization methodology to improve ignition timings predictions over the range of equivalence ratios from 0.2 to 1.2, temperature from 300 to 3000 K. The final model contains 40 species and 62 reactions and was validated under HCCI engine conditions. The results showed the well-known two-stage ignition characteristics of n-heptane, which involve low and high temperature regimes followed by a branched chain explosion. The optimized reduced model generally agrees well with those of the detailed chemical kinetic model (544 species and 2446 reactions); the computational time of using the former is less 1/1000 that of the latter.  相似文献   

10.
An experimental investigation is conducted to evaluate the use of sunflower and cottonseed oil methyl esters (bio-diesels) of Greek origin as supplements in the diesel fuel at blend ratios of 10/90 and 20/80, in a fully instrumented, six-cylinder, turbocharged and after-cooled, direct injection (DI), Mercedes-Benz, mini-bus diesel engine installed at the authors’ laboratory. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions from the baseline operation of the engine, i.e., when working with neat diesel fuel, and the two bio-diesels are determined and compared. Theoretical aspects of diesel engine combustion with the differing physical and chemical properties of these blends, aid the correct interpretation of the observed engine behavior.  相似文献   

11.
D.H. Qi  H. Chen  Y.ZH. Bian 《Fuel》2010,89(5):958-964
This work aims on the efficient use of ethanol-biodiesel-water micro-emulsions in a diesel engine. A single cylinder direct injection diesel engine is tested using neat biodiesel and the micro-emulsions as fuels under variable operating conditions. The results indicate that, compared with biodiesel, the peak cylinder pressure of the micro-emulsions is almost identical, and the peak pressure rise rate and peak heat release rate are higher at medium and high engine loads. At low engine loads, those of the micro-emulsions are lower. The start of combustion is later for the micro-emulsions than for biodiesel. For the micro-emulsions, there is slightly higher brake specific fuel consumption (BSFC), while lower brake specific energy consumption (BSEC). Drastic reduction in smoke is observed with the micro-emulsions at high engine loads. Nitrogen oxide (NOx) emissions are found slightly lower under all rang of engine load for the micro-emulsions. But carbon monoxide (CO) and hydrocarbon (HC) emissions are slightly higher for the micro-emulsions than that for biodiesel at low and medium engine loads.  相似文献   

12.
The isothermal crystallization kinetics and morphology have been investigated for a series of dilute binary blends using six monodisperse n-alkanes as guest in C162H326 as host. Two patterns of behaviour were observed. Guest molecules shorter than the host segregate as a separate population causing growth rates to become both reduced and non-linear. Morphologies are then noticeably less spherulitic than the host with less divergence between adjacent dominant lamellae but exhibiting no additional splaying at zero supercooling. By contrast, those blends with an n-alkane longer than the host co-crystallize (producing permanent cilia of controlled length) with a constant, but reduced, isothermal lamellar growth rate. Textures are now more spherulitic than the host, with additional splaying of an amount directly proportional to the number of permanent cilia and increasing with their length. The intercepts and slopes of plots of splaying data against supercooling are consistently related to permanent cilia plus inclined packing of initially rough lamellar surfaces and transient ciliation, respectively. The underlying causes of spherulitic growth for long molecules are thereby further confirmed and clarified.  相似文献   

13.
P.K. Devan  N.V. Mahalakshmi 《Fuel》2009,88(5):861-867
Experimental tests have been carried out to evaluate the performance, emission and combustion characteristics of a diesel engine using Neat poon oil and its blends of 20%, 40%, and 60%, and standard diesel fuel separately. The common problems posed when using vegetable oil in a compression ignition engine are poor atomization; carbon deposits, ring sticking, etc. This is because of the high viscosity and low volatility of vegetable oil. When blended with diesel, poon oil presented lower viscosity, improved volatility, better combustion and less carbon deposit. It was found that there was a reduction in NOx emission for Neat poon oil and its diesel blends along with a marginal increase in HC and CO emissions. Brake thermal efficiency was slightly lower for Neat poon oil and its diesel blends. From the combustion analysis, it was found that poon oil-diesel blends performed better than Neat poon oil.  相似文献   

14.
Chunde Yao  Chuanhui Cheng  Zhenyu Tian 《Fuel》2009,88(9):1752-1601
This study was performed with the use of tunable vacuum ultraviolet (VUV) lasers for molecular beam sampling mass spectrometry (MBMS) to detect the intermediates of a premixed n-heptane/oxygen/argon laminar low-pressure flame. In this experiment, 24 intermediate species were identified and quantified by the photoionization mass and efficiency spectra at a stoichiometric mixture of n-heptane/oxygen highly diluted by argon gas. The mole fraction profiles of these species at different flame positions are presented. The results show that the main intermediates are ketone and ether in the initial combustion period and these species then further oxidize to hydrocarbons. Of all the species, the concentrations of ethylene and polycyclic aromatic hydrocarbons (PAHs) are the highest concentration up to 10−2 and the lowest concentration to 10−5 in the mole fraction, respectively, at selective flame position. In addition, alkine like propyne exhibits very similar mole fraction profiles with that of benzene in the n-heptane flame. The results provide the strong evidence that benzene production correlates to alkine production in the flame and reinforces, at least qualitatively, the role of propyne species in the benzene formation mechanism. Finally, the distribution of 24 typical species in the flame is correlated with temperature, which is important in establishing the oxidation mechanism of hydrocarbon fuels.  相似文献   

15.
P.K. Devan  N.V. Mahalakshmi 《Fuel》2009,88(10):1828-1833
Engine tests have been carried out with the aim of obtaining the performance, emission and combustion characteristics of a diesel engine running on methyl ester of paradise oil (MEPS) and its diesel blends. From the emission analysis it was found that there was a significant reduction in smoke and hydrocarbon emissions by 33% and 22% respectively for MEPS 50 blend and 40% and 27% reductions for MEPS 100. However, there was an increase of 5% and 8% NOx emission for MEPS 50 and MEPS 100 respectively. Brake thermal efficiencies of MEPS and its diesel blends are slightly lower than that of std. diesel. From the engine analysis, it was found that the performance of MEPS and its diesel blends were similar to that of std. diesel.  相似文献   

16.
B.S. Kirkland 《Polymer》2008,49(2):507-524
Poly(n-alkyl acrylate)s can have side chains that crystallize independently of the main chain; side-chain length can thus be used as a tunable parameter to control the gas permeability of membranes. The gas permeation response of poly(n-alkyl acrylate) and poly(m-alkyl acrylate) blends as a function of temperature is reported for varying side-chain lengths, n and m, and blend composition in the semi-crystalline and molten states. Macroscopic homogeneity is observed for a small range of n and m where |n − m| ≤ 2-4 methylene units. Thermal analysis indicates that the blend components crystallize independently of one another; however, crystallization is hindered by the presence of the other component. Permeation responses of the blends investigated in some cases exhibited two distinct permeation jumps or increases at the melting temperature of each component. Blends with continuous permeation responses but higher effective activation energies of permeation (i.e., more thermally responsive) were observed for some blends over the temperature of interest for membranes to be used for modified atmosphere packaging.  相似文献   

17.
P.K. Sahoo 《Fuel》2009,88(6):994-999
Non-edible filtered Jatropha (Jatropha curcas), Karanja (Pongamia pinnata) and Polanga (Calophyllum inophyllum) oil based mono esters (biodiesel) produced and blended with diesel were tested for their use as substitute fuels of diesel engines. The major objective of the present investigations was to experimentally access the practical applications of biodiesel in a single cylinder diesel engine used in generating sets and the agricultural applications in India. Diesel; neat biodiesel from Jatropha, Karanja and Polanga; and their blends (20 and 50 by v%) were used for conducting combustion tests at varying loads (0, 50 and 100%). The engine combustion parameters such as peak pressure, time of occurrence of peak pressure, heat release rate and ignition delay were computed. Combustion analysis revealed that neat Polanga biodiesel that results in maximum peak cylinder pressure was the optimum fuel blend as far as the peak cylinder pressure was concerned. The ignition delays were consistently shorter for neat Jatropha biodiesel, varying between 5.9° and 4.2° crank angles lower than diesel with the difference increasing with the load. Similarly, ignition delays were shorter for neat Karanja and Polanga biodiesel when compared with diesel.  相似文献   

18.
Su Han Park  Chang Sik Lee 《Fuel》2011,90(2):748-755
The aim of this work is to investigate the effect of ethanol blending to diesel fuel on the combustion and exhaust emission characteristics of a four-cylinder diesel engine with a common-rail injection system. The overall spray characteristics, such as the spray tip penetration and the spray cone angle, were studied with respect to the ethanol blending ratio. A spray visualization system and a four-cylinder diesel engine equipped with a combustion and emission analyzer were utilized so as to analyze the spray and exhaust emission characteristics of the ethanol blending diesel fuel. Ethanol blended diesel fuel has a shorter spray tip penetration when compared to pure diesel fuel. In addition, the spray cone angle of ethanol blended fuels is larger. It is believed that the lower fuel density of ethanol blended fuels affects the spray characteristics. When the ethanol blended fuels are injected around top dead center (TDC), they exhibit unstable ignition characteristics because the higher ethanol blending ratio causes a long ignition delay. An advance in the injection timing also induces an increase in the combustion pressure due to the sufficient premixed duration. In a four-cylinder diesel engine, an increase in the ethanol blending ratio leads to a decrease in NOx emissions due to the high heat of evaporation of ethanol fuel, however, CO and HC emissions increase. In addition, the CO and HC emissions exhibit a decreasing trend according to an increase in the engine load and an advance in the injection timing.  相似文献   

19.
K. Varatharajan  M. Cheralathan 《Fuel》2011,90(8):2721-2725
Biodiesel offers cleaner combustion over conventional diesel fuel including reduced particulate matter, carbon monoxide and unburned hydrocarbon emissions. However, several studies point to slight increase in NOx emissions (about 10%) for biodiesel fuel compared with conventional diesel fuel. Use of antioxidant additives is one of the most cost-effective ways to mitigate the formation of prompt NOx. In this study, the effect of antioxidant additives on NOx emissions in a jatropha methyl ester fuelled direct injection diesel engine have been investigated experimentally and compared. A survey of literature regarding the causes of biodiesel NOx effect and control strategies is presented. The antioxidant additives L-ascorbic acid, α tocopherol acetate, butylated hydroxytoluene, p-phenylenediamine and ethylenediamine were tested on computerised Kirloskar-make 4 stroke water cooled single cylinder diesel engine of 4.4 kW rated power. Results showed that antioxidants considered in the present study are effective in controlling the NOx emissions of biodiesel fuelled diesel engines. A 0.025%-m concentration of p-phenylenediamine additive was optimal as NOx levels were substantially reduced in the whole load range in comparison with neat biodiesel. However, hydrocarbon and CO emissions were found to have increased by the addition of antioxidants.  相似文献   

20.
This paper displays a study of binary mixtures of n-alkanes whose ratio of chain length is around two. The systems composed of n-tricosane (n-C23H48)-n-pentacontane (n-C50H102) and n-pentacosane (n-C25H52)-n-pentacontane (n-C50H102) have been studied by means of X-ray analyses. These latter, performed at room temperature, showed in both cases, the existence of a large domain where the phases characteristic of each pure component coexist. These mixtures obey Kravchenko's rule relative to the solubility of the n-alkanes according to the chain length of each component. The mixtures studied do not form an intermediate solid solution. In other words, there is no particular arrangement of the shorter molecules inside the crystallographic unit of the longer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号