首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shiro Saka  Yohei Isayama  Zul Ilham  Xin Jiayu 《Fuel》2010,89(7):1442-1446
The production of glycerol as a by-product is unavoidable in the current conventional biodiesel manufacturing processes. Since biodiesel production is expected to increase in the near future, effective utilization of glycerol will become an issue of interest. In this study, therefore, a process consisting of subcritical acetic acid treatment to convert rapeseed oil to fatty acids and triacetin followed by conversion of the obtained fatty acids to their fatty acid methyl esters in supercritical methanol treatment was investigated. The obtained results clearly revealed that this two-step reaction could proceed effectively at a high reaction rate, and that fatty acid methyl esters and triacetin could be obtained under milder reaction condition than the one-step process utilizing supercritical methyl acetate and supercritical methanol.  相似文献   

2.
Conventional biodiesel production methods utilize alcohol as acyl acceptor and produces glycerol as side product. Hence, with escalating production of biodiesel throughout the world, it leads to oversupply of glycerol and subsequently causes devaluation in the market. In this study, methyl acetate was employed as acyl acceptor in non-catalytic supercritical methyl acetate (SCMA) process to produce fatty acid methyl esters (FAME) and side product of triacetin, a valuable fuel additive instead of glycerol. Consequently, the properties of biodiesel produced (FAME and triacetin) are superior compared to conventional biodiesel method (FAME only). In this research, the effects of reaction temperature, reaction time and molar ratio of methyl acetate to oil on the yield of biodiesel were investigated. Apart from that, the influence of impurities commonly found in waste oils/fats such as free fatty acids and water were studied as well and compared with methanol-based reactions of supercritical and heterogeneous catalysis. Results show that biodiesel yields in SCMA process could achieve 99 wt.% when the operating conditions were fixed at 400 °C/220 bar for reaction temperature, methyl acetate/oil molar ratio of 30:1 and 60 min of reaction time. Furthermore, SCMA did not suffer from adverse effect with the presence of impurities, proving that SCMA has a high tolerance towards contamination which is crucial to allow the utilization of inexpensive waste oils/fats as biodiesel feedstock.  相似文献   

3.
Thermal stability of biodiesel in supercritical methanol   总被引:1,自引:0,他引:1  
Hiroaki Imahara 《Fuel》2008,87(1):1-6
Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270 °C/17 MPa and 380 °C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270 °C/17 MPa, but at 350 °C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270 °C/17 MPa and 350 °C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300 °C, preferably 270 °C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production.  相似文献   

4.
José Maçaira 《Fuel》2011,90(6):2280-2288
Fatty acid methyl esters (biodiesel) were produced by the transesterification of triglycerides with compressed methanol (critical point at 240 °C and 81 bar) in the presence of solid acids as heterogeneous catalyst (SAC-13). Addition of a co-solvent, supercritical carbon dioxide (critical point at 31 °C and 73 bar), increased the rate of the supercritical alcohols transesterification, making it possible to obtain high biodiesel yields at mild temperature conditions. Experiments were carried out in a fixed bed reactor, and reactions were studied at 150-205 °C, mass flow rate 6-24 ml/min at a pressure of 250 bar. The molar ratio of methanol to oil, and catalyst amount were kept constant (9 g). The reaction temperature and space time were investigated to determine the best way for producing biodiesel. The results obtained show that the observed reaction rate is 20 time faster than conventional biodiesel production processes. The temperature of 200 °C with a reaction time of 2 min were found to be optimal for the maximum (88%) conversion to methyl ester and the free glycerol content was found below the specification limits.  相似文献   

5.
Tall oil fatty acids are a byproduct of the paper industry and consist predominantly of free-fatty acids (FFAs). Although this feedstock is ideal for biodiesel production, there has been relatively little study of its conversion to biodiesel. Thus, the purpose of this study was to investigate the high temperature reaction of methanol with tall oil at subcritical and supercritical pressures to produce fatty acid methyl esters. This study investigates the effects of mixing, pressure, temperature, and methanol to oil molecular ratio in order to determine the potential use of tall oil as a biodiesel feedstock. In this work, tall oil fatty acids were successfully reacted with supercritical and subcritical methanol in a continuous tubular reactor, resulting in a reaction that is primarily temperature dependent. Conversions at subcritical pressures of 4.2 MPa and 6.6 MPa were 81% and 75%, respectively. Pressure seemed to have little correlation to conversion in both regimes, and conversions were comparable between the two. Additionally, it was found that tall oil fatty acids react well with methanol to give comparable conversions at the relatively low molecular flow ratio of 5:1 methanol to tall oil. Both of these observations suggest that hydrolyzed triglycerides or free fatty acid feedstocks would make the primary high temperature biodiesel reaction and the subsequent separation and purification operations less expensive than was previously believed.  相似文献   

6.
Eiji Minami  Shiro Saka   《Fuel》2006,85(17-18):2479-2483
For high-quality biodiesel fuel production from oils/fats, the catalyst-free two-step supercritical methanol process has been developed in a previous work, which consists of hydrolysis of triglycerides to fatty acids in subcritical water and subsequent methyl esterification of fatty acids to their methyl esters in supercritical methanol. In this paper, therefore, kinetics in hydrolysis and subsequent methyl esterification was studied to elucidate reaction mechanism. As a result, fatty acid was found to act as acid catalyst, and simple mathematical models were proposed in which regression curves can fit well with experimental results. Fatty acid was, thus, concluded to play an important role in the two-step supercritical methanol process.  相似文献   

7.
In this comparative study, conversion of waste cooking oil to methyl esters was carried out using the ferric sulfate and the supercritical methanol processes. A two-step transesterification process was used to remove the high free fatty acid contents in the waste cooking oil (WCO). This process resulted in a feedstock to biodiesel conversion yield of about 85-96% using a ferric sulfate catalyst. In the supercritical methanol transesterification method, the yield of biodiesel was about 50-65% in only 15 min of reaction time. The test results revealed that supercritical process method is probably a promising alternative method to the traditional two-step transesterification process using a ferric sulfate catalyst for waste cooking oil conversion. The important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to oil, the catalyst amount and the reaction temperature. The analysis of oil properties, fuel properties and process parameter optimization for the waste cooking oil conversion are also presented.  相似文献   

8.
The analysis of phase equilibrium between methanol and glycerides during methyl esters of fatty acids (FAME or biodiesel) synthesis at high pressure and temperature is very important for describing the kinetic and process design. It was studied at pressure between 1.1 and 28.0 MPa and temperature from 150 to 270 °C. The transition of phases and composition of identified phases was calculated using RK-Aspen EOS and obtained values were also compared to experimentally determined data at subcritical condition (1.1-4.5 MPa and 150-210 °C).Results of experimental investigation, as well as performed simulation of some specified composition of reaction mixture, showed that system of triglycerides and methanol, at the beginning of reaction (at all analysed conditions except for supercritical state of mixture) is in equilibrium between two liquid phases. During the methanolysis of triglycerides, the phase's distribution was changed accordingly and it highly depends on actual composition of reaction mixture, temperature and pressure. Calculated and measured values indicated that distribution of methanol between the oil phase, the methyl esters, and the glycerol rich phase exists and depends of working condition. As a consequence of fact, that the methanolysis of triglycerides (oil) is mainly realized in the oil-rich phase, at the end of reaction, after all triglycerides are converted into FAME and glycerol, the oil phase disappears. Furthermore, according to the results of phase composition calculation, it was shown that from the beginning to the end of reaction one phase only exists, for methanolysis performed at 270 °C and 20.0 MPa.  相似文献   

9.
New biodiesel production processes comprising one‐step and two‐step supercritical dimethyl carbonate methods have been pioneered. The use of dimethyl carbonate allows the reaction conditions to be mild and thus avoid unwanted deterioration of substrates during reaction. In this process, without any catalyst applied, supercritical dimethyl carbonate converts triglycerides (rapeseed oil) into fatty acid methyl esters (FAME) along with glycerol carbonate as a value‐added by‐product, instead of glycerol. Free fatty acids could be also converted into FAME so that the total yield of biodiesel for both methods resulted in over 96 wt%. In addition, the produced FAME satisfy the fuel requirements for the international standards of biodiesel specification.  相似文献   

10.
A continuous process for biodiesel production in supercritical carbon dioxide was implemented. In the transesterification of virgin sunflower oil with methanol, Lipozyme TL IM led to fatty acid methyl esters yields (FAME) that exceeded 98% at 20 MPa and 40 °C, for a residence time of 20 s and an oil to methanol molar ratio of 1:24. Even for moderate reaction conversions, a fractionation stage based on two separators afforded FAME with >96% purity. Lipozyme TL IM was less efficient with waste cooking sunflower oil. In this case, a combination of Lipozyme TL IM and Novozym 435 afforded FAME yields nearing 99%.  相似文献   

11.
Jude A. Onwudili 《Fuel》2010,89(2):501-15
A viscous waste derived from a bio-diesel production plant, in the form of crude glycerol, was reacted under subcritical and supercritical water conditions and the product composition determined in relation to process conditions. Preliminary analysis of the original sample showed that the main constituent organic compounds were methanol (20.8 wt.%), glycerol (42.3 wt.%) and fatty acid methyl esters (33.1 wt.%). Uncatalyzed reforming experiments were carried out in a 75 ml Hastelloy-C batch reactor at temperatures between 300 °C and 450 °C and pressures between 8.5 MPa and 31 MPa. Oil/wax constituted more than 62 wt.% of the reactions products. At 300 °C, the main product was a waxy material containing mainly glycerol and fatty acid methyl esters. As the temperature increased to supercritical water conditions, low viscosity oils were produced and all of the glycerol was reacted. The oils contained mainly saturated and unsaturated fatty acid esters as well as their decomposition products. The gaseous products were carbon dioxide, hydrogen and methane and lower concentrations of carbon monoxide and C2-C4 hydrocarbons. No char formation was observed. However, during alkaline gasification with sodium hydroxide at 380 °C, the reaction products included a gaseous effluent containing up to 90% by volume of hydrogen, in addition to oil and significant amount of whitish solid residue (soap). Sodium hydroxide influenced the production of hydrogen via water-gas shift by the removal of carbon dioxide as sodium carbonate, but also decreased oil product possibly through saponification.  相似文献   

12.
Recycled vegetable oil (RVO) is a relatively cheap raw material for biodiesel production, but biodiesel grade methyl ester yields from RVO were found to be considerably lower than those from pure plant oil. The present paper investigates sources of yield loss during methanolysis of RVOs with free fatty acids (FFA) contents of 0.4–3.3%, and makes suggestions for the improvement of methyl ester yields. Data presented here indicated that yield losses of methyl esters during methanolysis were due to triglyceride and methyl ester hydrolysis and to the dissolution of methyl esters in the glycerol phase. Hydrolysis of triglycerides and methyl esters seemed to be the only side reaction causing yield losses, and the amount of fatty acids from hydrolysis increased with concentration of the potassium hydroxide catalyst. Dissolution of methyl esters in the glycerol phase was probably caused by the detergent effect of potassium salts of fatty acids originating from FFA in the RVO and from triglyceride hydrolysis, and the amount of dissolved methyl esters increased with FFA content of the RVO. The FFA content of the RVO had no effect on hydrolysis, and the amount of triglycerides and methyl esters hydrolysed during methanolysis remained constant with increasing FFA content of the RVO.  相似文献   

13.
We report a simple method that efficiently esterifies the fatty acids in soapstock, an inexpensive, lipid-rich by-product of edible oil production. The process involves (i) alkaline hydrolysis of all lipid-linked fatty acid ester bonds and (ii) acid-catalyzed esterification of the resulting fatty acid sodium salts. Step (i) completely saponified all glycerides and phosphoglycerides in the soapstock. Following water removal, the resulting free fatty acid sodium salts were rapidly and quantitatively converted to fatty acid methyl esters (FAME) by incubation with methanol and sulfuric acid at 35°C and ambient pressure. Minimum molar reactant ratios for full esterification were fatty acids/methanol/sulfuric acid of 1∶30∶5. The esterification reaction was substantially complete within 10 min and was not inhibited by residual water contents up to ca. 10% in the saponified soapstock. The product FAME contained >99% fatty acid esters, 0% triglycerides, <0.05% diglycerides, <0.1% monoglycerides, and <0.8% free fatty acids. Free fatty acid levels were further reduced by washing with dilute sodium hydroxide. Free and total glycerol were <0.01 and <0.015%, respectively. The water content was <0.04%. These values meet the current specifications for biodiesel, a renewable substitute for petroleum-derived diesel fuel. The identities and proportions of fatty acid esters in the FAME reflected the fatty acid content of soybean lipids. Solids formed during the reaction contained 69.1% ash and 0.8% protein. Their sodium content indicated that sodium sulfate was the prime inorganic component. Carbohydrate was the predominant organic constituent of the solid.  相似文献   

14.
The transesterification of soybean oil with supercritical methanol in a batch reactor with no added catalyst was investigated, studying the evolution of intermediate products (monoglycerides and diglycerides) as well as the conversion of triglycerides and the yield of fatty acid methyl esters and glycerol. Experiments were carried out in a temperature range of 250–350 °C (12–43 MPa) at reaction times of between 15 and 90 min for a methanol-to-oil molar ratio of 43:1. The best reaction conditions in this one-step supercritical process (325 °C/35 MPa and 60 min), in which triglyceride conversion was practically total, led to a maximum yield of fatty acid methyl esters of 84%. In these conditions an 8.1 wt% of monoglycerides and diglycerides remained in the medium. Although the use of more severe reaction conditions (longer reaction times and higher temperatures) reduced the content of these glycerides, the yield of methyl esters decreased due to their thermal decomposition.  相似文献   

15.
Nestor U. Soriano Jr. 《Fuel》2009,88(3):560-565
Lewis acids (AlCl3 or ZnCl2) were used to catalyze the transesterification of canola oil with methanol in the presence of terahydrofuran (THF) as co-solvent. The conversion of canola oil into fatty acid methyl esters was monitored by 1H NMR. NMR analysis demonstrated that AlCl3 catalyzes both the esterification of long chain fatty acid and the transesterification of vegetable oil with methanol suggesting that the catalyst is suitable for the preparation of biodiesel from vegetable oil containing high amounts of free fatty acids. Optimization by statistical analysis showed that the conversion of triglycerides into fatty acid methyl esters using AlCl3 as catalyst was affected by reaction time, methanol to oil molar ratio, temperature and the presence of THF as co-solvent. The optimum conditions with AlCl3 that achieved 98% conversion were 24:1 molar ratio at 110 °C and 18 h reaction time with THF as co-solvent. The presence of THF minimized the mass transfer problem normally encountered in heterogeneous systems. ZnCl2 was far less effective as a catalyst compared to AlCl3, which was attributed to its lesser acidity. Nevertheless, statistical analysis showed that the conversion with the use of ZnCl2 differs only with reaction time but not with molar ratio.  相似文献   

16.
Umer Rashid 《Fuel》2008,87(3):265-273
Present work reports an optimized protocol for the production of biodiesel through alkaline-catalyzed transesterification of rapeseed oil. The reaction variables used were methanol/oil molar ratio (3:1-21:1), catalyst concentration (0.25-1.50%), temperature (35-65 °C), mixing intensity (180-600 rpm) and catalyst type. The evaluation of the transesterification process was followed by gas chromatographic analysis of the rapeseed oil fatty acid methyl esters (biodiesel) at different reaction times. The biodiesel with best yield and quality was produced at methanol/oil molar ratio, 6:1; potassium hydroxide catalyst concentration, 1.0%; mixing intensity, 600 rpm and reaction temperature 65 °C. The yield of the biodiesel produced under optimal condition was 95-96%. It was noted that greater or lower the concentration of KOH or methanol than the optimal values, the reaction either did not fully occur or lead to soap formation.The quality of the biodiesel produced was evaluated by the determinations of important properties such as density, specific gravity, kinematic viscosity, higher heating value, acid value, flash point, pour point, cloud point, combustion point, cold filter plugging point, cetane index, ash content, sulphur content, water content, copper strip corrosion value, distillation temperature and fatty acid composition. The produced biodiesel was found to exhibit fuel properties within the limits prescribed by the latest American Standards for Testing Material (ASTM) and European EN standards.  相似文献   

17.
International standards (e.g., ASTM D6751 and EN14214) limit the presence of free glycerol in biodiesel. The traditional water wash method for removing glycerol from crude fatty acid methyl esters (FAME) obtained in the production of biodiesel results in waste waters that cannot be readily discharged. To circumvent the water wash purification method, a membrane separation system using ceramic membranes was designed, constructed and tested for the removal of glycerol from crude FAME from a biodiesel production process. Ceramic membranes in the ultrafiltration (0.05 μm) and microfiltration (0.2 μm) ranges were tested at three different operating temperatures: 0, 5 and 25 °C. All runs separated glycerol from the crude FAME. International standards for glycerol content in biodiesel were met after 3 h when utilizing the ultrafiltration membrane setup at 25 °C with a concentration factor greater than 1.6.  相似文献   

18.
In this study, a supercritical one-pot process combining transesterification and partial hydrogenation was proposed to test its technical feasibility. Simultaneous transesterification of soybean oil and partial hydrogenation of polyunsaturated compounds over Cu catalyst in supercritical methanol was performed at 320 °C and 20 MPa. Hydrogenation proceeded simultaneously during the transesterification of soybean oil in supercritical methanol, and hydrogenation occurred during the reaction despite the absence of hydrogen gas. The polyunsaturated methyl esters obtained in the biodiesel were mainly converted to monounsaturated methyl esters by partial hydrogenation. Key properties of the partially hydrogenated methyl esters were improved and complied with standard specifications for biodiesel.  相似文献   

19.
In this study, transesterification of rapeseed oil using subcritical methanol conditions was studied. The objective of the work was characterizing the methyl esters for its use as biodiesel in compression ignition motors. The variables affecting the methyl ester yield during the transesterification reaction, such as, the catalyst type and content, reaction temperature and pressure, the presence of hexane as co-solvent, the methanol oil molar ratio and the methanol hexane molar ratio were investigated to optimize the reaction conditions. The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, saponification value, iodine value, acidity index and water content, according to ISO norms. High methyl ester yield and fast reaction rate could be obtained even if the reaction pressure was relatively low, which is quite favorable to the production of biodiesel in industry.  相似文献   

20.
《Fuel Processing Technology》2005,86(10):1097-1107
Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. It consists of the monoalkyl esters formed by a catalyzed reaction of the triglycerides in the oil or fat with a simple monohydric alcohol. The reaction conditions generally involve a trade-off between reaction time and temperature as reaction completeness is the most critical fuel quality parameter. Much of the process complexity originates from contaminants in the feedstock, such as water and free fatty acids, or impurities in the final product, such as methanol, free glycerol, and soap. Processes have been developed to produce biodiesel from high free fatty acid feedstocks, such as recycled restaurant grease, animal fats, and soapstock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号