首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To simulate the effects of burnable poison doping in nuclear fuel UO2,Er2O3(or Gd2O3)-doped CeO2 pellets were prepared. Changes in lattice constant and atomic disordering for CeO2 due to the Er2O3 and Gd2O3 doping were measured by means of XRD and XAFS. By the Er2O3 doping,the lattice constant decreased,and a disordering of lattice structure was induced in the samples. The doping with Er2O3 also induced the disordering of atomic arrangement around Er atoms,which was observed through the change in XAFS spectra. In contrast,the effect of Gd2O3 doping was smaller than that of Er2O3 doping. The result was discussed in terms of ionic size of dopants in CeO2 crystal.  相似文献   

2.
We reported the magnetic properties and magnetocaloric effects(MCE) of(La0.8Ho0.2)2/3Ca1/3MnO3 and(La0.5Ho0.5)2/3Ca1/3MnO3 nanoparticles by sol-gel technique.With this method,we were able to obtain the samples with particle diameters ranging from 50 to 200 nm.In the(La1-xHox)2/3Ca1/3MnO3 compound,an external magnetic field induced a magnetic transition from an paramagnetic phase to a ferromagnetic phase above Ts=105-135 K,leading to magnetocaloric effects.The maximum value of ΔSM was 1.19 J/(kg·K) at 100 K and 2.03 J/(kg·K) at 152 K for a magnetic field change of 5 T.Because both samples had large relative cooling power(RCP) and wide δTFWHM,the study on systems with the(La1-xHox)2/3Ca1/3MnO3-related magnetic transitions may open an important field in searching good magnetic materials.  相似文献   

3.
The structure and magnetic properties of Gd2Fe15.5Cr1.5 compound were investigated by means of X-ray diffraction and magnetization measurements.The Gd2Fe15.5Cr1.5 compound had a rhombohedral Th2Zn17-type structure.The Curie temperature of Gd2Fe15.5Cr1.5 compound was about 570 K.This value was about 60 K higher than that of the mother compound Gd2Fe17.Negative thermal expansion was found in Gd2Fe15.5Cr1.5 compound in a broad temperature range 294-572 K by X-ray dilatometry.The coefficient of the average thermal expansion was =-3.87×10-6 K-1 in 294-512 K,and-1.58×10-5 in 512-572 K.The magnetostriction deformations from 294 to 532 K were calculated by means of the differences between the experimental values of the lattice parameters and corresponding values extrapolated from the paramagnetic range.The result showed that the spontaneous volume magnetostrictive deformation ωS decreased linearly from 4.73×10-3 to 0.11×10-3 with the temperature increasing from 294 to 532 K.The analysis showed that the ωS mainly came from the contribution of the spontaneous linear magnetostrictive λc along the c axis.  相似文献   

4.
The crystal structure of silicate oxyapatite Ca2Y8Si6O26 was indexed as hexagonal,space group P63/m,a=0.93515 nm,c=0.67872 nm,α=β=90°,γ=120°,V=0.5138692 nm3.Three strong peaks located at 32.079o,32.595o,and 50.104o with d=2.7903,2.74649,1.8194 was in accordance with,(112),and(213) planes.The optimum concentration of Tb3+ in Ca2Y8Si6O26 to yield highest photoluminescence intensity was 10 mol.% of Y3+.The corresponding excitation spectrum consisted of an intense broad band from 220 to 260 nm.The photoluminescence measurements showed that the green emission originated from 5D4-7F5 was predominant in the measured range with strong doublet lines at 543 and 549 nm.  相似文献   

5.
Sm2O3 and TiB2 were used as codeposited particles in electrodeposition Ni-TiB2-Sm2O3 composite coatings to improve its performance. Ni-TiB2-Sm2O3 composite coatings were electrodeposited in the nickel sulfate,hexadecylpyridinium bromide and cetyltrimethylammonium bromide solution containing TiB2 and Sm2O3 particles. The content of codeposited Sm2O3 in the composite coating was controlled by changing the concentrations of Sm2O3 particles in the solution. The composite coatings were characterized with X-ray diffraction(XRD) and inductively coupled plasma-atomic emission spectrometer(ICP-AES) . The effects of Sm2O3 content on microhardness,wear weight loss and friction coefficient of composite coatings were investigated,respectively. The microhardness of the Ni-TiB2-Sm2O3 composite coatings was 19.35%,16.58%,2.03% higher than that of the Ni coating,Ni-Sm2O3 and Ni-TiB2 composite coatings,respectively. The wear weight loss of the Ni-TiB2-Sm2O3 composite coatings was 7,2.33,1.22 times lower than that of the Ni coating,Ni-Sm2O3 and Ni-TiB2 composite coatings,respectively. The friction coefficient of the Ni coating,Ni-Sm2O3,Ni-TiB2 and Ni-TiB2-Sm2O3 composite coatings were 0.712,0.649,0.850 and 0.788,respectively. The loading-bearing capacity and the wear-reducing effect of the Sm2O3 particles were closely related to the content of Sm2O3 particles in the composite coatings.  相似文献   

6.
Uniform core-shell Eu3+:Y2O3/SiO2 spheres were synthesized via precipitation and the Stber method.The structural transition of core-shell Eu3+:Y2O3/SiO2 was studied by using high pressure photoluminescence spectra.With pressure increasing,the emission intensities of 5D0→7F0,1,2 transitions of Eu3+ ions decreased and the transition lines showed a red shift.The relative luminescence intensity ratio of 5D0→7F2 to 5D0→7F1 transitions decreased with increasing pressure,indicating lowering asymmetry around Eu3+ ions.During compression,structural transformation for cores in the present core-shell Eu3+:Y2O3/SiO2 sample from cubic to monoclinic took place at 7.5 GPa,and then the monoclinic structure turned into hexagonal above 15.2 GPa.After the pressure was released,the hexagonal structure transformed back to monoclinic and the monoclinic structure was kept stable to ambient pressure.  相似文献   

7.
Development of the efficient hot metal dephosphorization processes during steelmaking process is one of the most essential topics for the production of high grade clean steels. Since the formation of solid solution composed of tricalcium phosphate and dicalcium silicate could obtain a considerable mass transfer of phosphorus from liquid slag into solid phase during hot metal dephosphorization, itcould obviously sustain a high phosphatecapacityof theliquid slag without huge consumption of lime or addition of fluxes, such as fluorite. The above outlines are the main idea of multi phase flux dephosphorization. For the last few decades, many studies have been done towards the scientific principles and the commercial utilization of this technique. However, the reaction mechanism by using multi phase fluxes remains unclear even by now due tolack of evidence. Based on those previous works, providing a reliable and available phase diagram for the fundamental understanding of the reaction mechanism of multi phase flux dephosphorization has become the main purpose of present research. As well known, the CaO-SiO2-FeO-P2O5 slag is the main component of current steelmaking process. Hence the CaO-SiO2-FeO-P2O5 system at equilibrium has been studied at 1673K with low oxygen partial pressure. The solid phase coexisting with liquid flux is approved to be the solid solution composed of CaO, SiO2 and P2O5. Phosphorus distributes mainly in solid solution rather than liquid phase.  相似文献   

8.
Sm2Fe17 alloy was the precursor of Sm2Fe17Nx magnetic materials.Reduction-diffusion(R/D) method was a new preparation process for the Sm2Fe17 alloy,and had been widely employed as a new preparation method for rare earth-transition metal intermetallic compounds.In this text,thermodynamics and kinetics for the synthesis of the Sm2Fe17 alloy by reduction-diffusion(R/D) method in the Ca-Sm2O3-Fe system were analyzed.The related synthesis mechanism of this reaction was investigated in detail by means of scanning electron microscope(SEM).The results showed that the thickness of the Sm2Fe17 alloy layer versus the reaction time could be fit by the parabola law,and its growth model was determined to be:(L0-L)2=43.848 t,the diffusion of Sm into Fe proceeded with the formation of the Sm2Fe17 phase from the very beginning of the reaction,and rich samarium phases,such as SmFe2 and SmFe3,were not formed,and the rate-determining step of the R/D reaction was found to be the peritectic reaction between liquid samarium and solid iron.  相似文献   

9.
UHMWPE have good effect to slow down fast neutrons and Sm2O3 can absorb the thermal neutrons.A new style UHMWPE/ Sm2O3 composite shielding material was manufractured by hot-press moulding method.The microstructure and mechanical properties were characterized by IR and SEM.The results indicate that Sm2O3 distributed continuously,evenly in UHMWPE,and the interface was combined closely.Hardness of UHMWPE/Sm2O3 composites increased at first and decreased and tensile strength decreased with the increasing of Sm2O3 mass fraction.  相似文献   

10.
This paper aims at generally studying on the inclusions of ZGG06Cr13Ni4Mo ultra-low carbon stainless steel used for large scale hydraulic turbine sets. On the basis of analysis the industrial test samples, thermodynamic software FactSage is used to study inclusions transformation process in CaO-SiO2-Al2O3-MgO system while stainless steel is been smelting. The results illustrate the inclusions melting points and plasticity variation law. The reasonable inclusions plasticity controlling area is found out in low melting point. The melting point is up to 1280℃ While MgO weight concentration is 10% in CaO-SiO2-Al2O3-MgO system, SiO2, Al2O3 and CaO in inclusions are in weight concentration range of 50-70%, 10-20% and 10-40%, respectively. For purpose of gaining low melting point inclusions, silicon alumina radio in deoxidant should be controlled between 2-5 for ultra-low carbon stainless steel refining in industry.  相似文献   

11.
The crystal structure,microstructure and the magnetostriction of Fe83Ga17Dyx(x=0,0.2,0.4,0.6) series alloys were studied.The results showed that the influence of the Dy on the crystal structure of the alloy was very small but the effect on the microstructure was significant when different contents of Dy were added into the Fe83Ga17 alloy,respectively.Meanwhile,the magnetostriction of Fe83Ga17Dy0.2 alloy was greatly enhanced,the magnetostriction λ value reached 300×10-6 at 400(kA/m) magnetic field.  相似文献   

12.
采用传统陶瓷工艺对(Na0.5K0.5)NbO3进行了铁掺杂改性研究。使用SEM、XRD并结合常规性能测试手段对该体系的显微结构、压电性能进行了表征。研究结果表明:对于(Na0.5K0.5)NbO3无铅压电陶瓷,Fe的掺杂提高了致密性、使晶体颗粒长大、降低了介电性能。  相似文献   

13.
One-dimensional Lu2O3:Eu3+ nanofibers were prepared by electrospinning followed by high-temperature calcinations.Thermogravimetric and differential thermal analysis,X-ray powder diffraction,Fourier transform infrared spectroscopy,scanning electron microscopy,photoluminescent spectra and decay curves were used to characterize the samples.Results showed that samples began to crystallize at ~500 oC and crystallized completely around 1000 oC.The average diameter of nanofibers(1000 oC annealed) was about 55 nm and the particle size of Lu2O3:Eu3+ increased with increasing annealing temperature.Under ultraviolet excitation,nanofibers exhibited typical red emission of Eu3+ in Lu2O3.The effect of heat-treatment temperature on luminescent properties of nanofibers was also discussed.  相似文献   

14.
A blue phosphor Ca2PO4Cl:Eu2+(CAP:Eu2+) was synthesized by solid state reaction.The Ca2PO4Cl:Eu2+ exhibited high quantum efficiency and excellent thermal stability.The luminescent intensity of Ca2PO4Cl:Eu2+ was found to be 128% under excitation at 380 nm,149% under 400 nm,and 247% under 420 nm as high as that of BaMgAl10O17:Eu2+.The optimal doping concentration was observed to 11 mol.% of CAP:Eu2+.The energy transfer between Eu2+ ions in CAP were occurred via electric multipolar interaction,and the critical transfer distance was estimated to be 1.26 nm.A mixture of blue-emitting Ca2PO4Cl:Eu2+,green-emitting(Ba,Sr)2SiO4:Eu2+ and red-emitting CaAlSiN3:Eu2+ phosphors were selected in conjunction with 400 nm chip to fabricate white LED devices.The average color-rendering index Ra and correlated color temperature(Tc) of the white LEDs were found to be 93.4 and 4590 K,respectively.The results indicated that it was a promising candidate as a blue-emitting phosphor for the near-UV white light-emitting diodes.  相似文献   

15.
Ni-W-P matrix composite coatings reinforced by CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by double pulse electrodeposition and the deposition mechanism was discussed.The results showed that the composite coatings with amorphous structure were obtained as-deposited.The initial growth behavior had alternatives and the nucleation was inhomogeneous because of obvious composition fluctuation.With the pulse deposition time increasing,some pearlite microstructures of the substrate were covered by some deposits and the composition fluctuation disappeared.Forward pulse currents promoted to form a great number of atomic beams composed of Ni,W and P atoms or CeO2 and SiO2 nano-particles as the core,which inhabited the growth of atomic beams.Reverse pulse currents eliminated concentration polarization and dissolved some surface boss of atomic beams.The solution of W and P atoms within Ni grains and embedding of CeO2 and SiO2 nano-particles within Ni-W-P matrix metal made atomic arrangement disordered.Finally,the atomic beams grew to amorphous small particles.  相似文献   

16.
Ba0.9-ySryAl12O19:Eu0.1 phosphors were prepared by sol-gel technique,the crystalline structures of samples characterized by XRD,and the luminescence properties were investigated.The influence of crystallographic positions on the luminescent properties of Sr2+-doped BaAl12O19:Eu was investigated in detail.The results indicated that the crystal lattice of BaAl12O19:Eu was not influenced by the Sr2+ and doping Sr2+ in BaAl12O19:Eu enhanced the luminescent properties of the phosphors at the proper concentration of Sr2+.With the increasing of concentration of Sr2+ doped in BaAl12O19:Eu,the relative luminescent intensity of Ba0.9-ySryAl12O19:Eu0.1 strengthened and blue-shifted.  相似文献   

17.
Pure SnO2 and Ce-doped(1%,4%,7%,10% in mass ratio) SnO2 powders were prepared by a simple sol-gel method.The as-prepared samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and Brunauer-Emmett-Teller(BET) specific surface area analyzers.Results showed that the 7% Ce-doped sample has a particle size of 0.1-0.3 μm with a narrow particle size distribution while the pure SnO2 was consisted of large agglomerated particles with a diameter up to several micrometers.When used as the catalyst to degrade methyl orange(MO),the 7% Ce-doped sample showed best photocatalytic property.These properties can be attributed to the large surface area and small particle size of the 7% Ce-doped sample.  相似文献   

18.
We proposed a simple method to improve the thermal stability of BaMgAl10O17:Eu2+(BAM) phosphors by the substitution of Si-N bonds for Al-O bonds in the host lattice.Both photoluminescence properties and thermal stability under ultraviolet(UV) and vacuum ultraviolet(VUV) excitation could be significantly improved through Si-N incorporation.After thermal degradation at 600 °C for 1 h in air atmosphere,the Si-N doped sample(Ba0.88Eu0.12MgAl9.97Si0.03O16.97N0.03) had the highest emission intensity which was 22% and 40% stronger than that of as-received sample under UV and VUV excitation,respectively.This could be attributed to the stable local structure surrounding the Eu2+ ions and the lower electronegativity of nitrogen.  相似文献   

19.
The deoxidization reaction at the interface between slag and metal is one of the most important reactions in the iron and steel making.The interface reaction and transport characteristics of Molten Ultra-low Carbon Steel with CaO-MgO-Al2O3 slag system under different over potential conditions of the system was studied.The electrochemical reduction mechanism at the interface between the molten slag and molten steel was investigated.The results showed that Chronoamperometry method is very useful for the study of interfacial reaction in the slag-metal system.The current of interfacial reaction decreases approximately linearly with t-1/2,and the diffusion coefficient of oxygen in molten slag calculated by Cottrell equation increased dramatically with over potential.In the open circuit potential,the diffusion coefficient of oxygen in the slag is about 10-8m2/s.  相似文献   

20.
Tin dioxide(SnO2) and La-doped(1%,5%,10% in mass ratio) SnO2 samples were prepared via a hydrothermal method. The as-prepared powders were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) . Results showed that the particle size of SnO2 decreased gradually with the increase of the doped La element. When used as anode materials of Li ion battery,the La-doped samples exhibited better cycling performance than the pure SnO2,and the cycling performance of the La-doped samples got better and better with the increase of the doped La. The better electrochemical performance of the doped material could be attributed to the doping of La element,which not only enabled SnO2 powders to have a good dispersivity but also reduced their particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号