首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究了V100-xNix(x=0~12%(原子分数))二元合金的活化性能、吸氢动力学性能、放氢PCT性能及吸放氢过程相结构的变化。Ni的添加提高了钒的活化性能和动力学性能。随着Ni含量的增加,γ相的分解压逐渐升高,稳定性降低。在20℃,3MPa氢压下,当Ni含量高于0.5%(原子分数)时,γ相的含量迅速降低,饱和吸氢量明显减少,当Ni含量超过2%(原子分数)时,γ相消失。增加Ni含量,有利于降低B相的含量,提高B相的分解压。随着Ni含量的增加,合金的晶格常数呈线性趋势降低。  相似文献   

2.
The nucleation and growth behaviors of primary Al phase in two hypoeutectic binary alloys of Al-20.8%Cu and Al-3%Ni in high static magnetic fields were investigated with aid of differential thermal analysis(DTA).The DTA curves indicated that the nucleation temperature of primary crystals in two alloys decreased with increase of the magnetic field intensity and their nucleation was retarded in the magnetic field.The dendrite morphology showed that primary dendrites grew from disorderly without the magnetic field to regularly with the field.The retardation of nucleation of primary Al crystals was mainly caused by increase of interracial free energy.The change in dendrite morphology could be attributed to suppression of melt flows in the magnetic field.  相似文献   

3.
低钴AB5型贮氢合金的制备与研究   总被引:2,自引:0,他引:2  
用均匀设计试验方法设计系列含Fe低Co AB5型贮氢合金B侧配比, 以放电容量、活化次数、容量保持率及放电平台中值电位为多目标函数, 采用逐步回归分析方法和最小二乘法及黄金分割一维寻优手段进行最优化处理, 确定了最优化的B侧合金元素的摩尔比 Mm0.8La0.2Ni4.0Mn0.5Al0.3Co0.37Fe0.13(AB5.3).新型含Fe低Co MmB5型贮氢合金是单相CaCu5型结构, Co含量为4.97%, 放电容量达307.3 mAh·g-1(极片), 活化次数为两次, 500次循环后容量保持率为78.9%, 高温容量为277.2 mAh·g-1(55 ℃), 低温容量为197.3 mAh·g-1(-30 ℃), 3C放电容量为275.4 mAh·g-1.  相似文献   

4.
为了降低贮氢合金中的钴含量,从而降低镍氢电池的价格,在贮氢合金M1Ni3.55Co0.75Al0.3Mn0.4的基础上,依次添加Cu、Cr、Zn、Fe元素,得到稀土基多元贮氢合金,并对其放电容量和循环稳定性进行了测试和分析。结果表明,适量的Cu、Cr、Zn、Fe替代Co,仍能使贮氢合金具有较高的放电容量和较好的循环稳定性。  相似文献   

5.
得到综合电性能良好的低CoAB5型贮氢合金成分。本文对所设计的一系列含Fe低CoAB5型贮氢合金MmNi3.55Co0.75-xMn0.4Al0.3Fex(x=0,0.1,0.2,0.3,0.4,0.5)进行了相关性能与结构测试,同时分析了对低CoMmB5合金结构参数与电性能之间的关系进行详细分析与表征。  相似文献   

6.
Evolution of Hydrogen Storage Alloys Prepared by Special Methods   总被引:1,自引:0,他引:1  
Microstructure characteristics and electrochemical properties of hydrogen storage alloys prepared by gas atomization, melt spinning and strip casting respectively were outlined.The advantages, disadvantages and research development of the above methods for preparing hydrogen storage alloys were explained.The strip casting is a new special means for preparing AB5 rare earth hydrogen storage alloys of high performance and low cost, and the study of the strip casting for preparing hydrogen storage alloys is presented specially.  相似文献   

7.
We studied the effect of melt convection on phase separation structures in undercooled Cu80Co20 alloys by using an electromagnetic levitator, where a static magnetic field was applied to control convection in the molten alloys. It was found that, when the static magnetic field was relatively small, dispersed structures with relatively fine Co-rich spheres distributed in the matrix of the Cu-rich phase were observed. However, a few large, coalesced Co-rich phases appeared in the Cu-rich matrix when the magnetic field exceeded a certain value, i.e., approximately 1.5 T in this study. The mean diameter of the droplet-shaped Co-rich phases distributed in the matrix of the Cu-rich phase increased gradually with the magnetic field and increased rapidly at approximately 1.5 T. Moreover, it was speculated from the result of periodic laser heating that the marked change in the phase separation structures at approximately 1.5 T might be due to a convective transition from turbulent flow to laminar flow in the molten sample, where the time variation of temperature in the lower part of the electromagnetically levitated molten sample was measured when the upper part of the sample was periodically heated.  相似文献   

8.
本文研究了NdFeB三元系永磁合金在恒温(773~1023K)回火过程中组织结构与性能的变化。实验结果表明:在回火初期(1~3min)矫顽力较快地提高,达到峰值后矫顽力又降低。回火温度越低,矫顽力达到峰值所需的时间越长,与烧结态相比,回火后矫顽力可提高1倍。回火前后合金的基体相没有变化,都是单相的,没有缺陷。回火过程仅是晶界,特别是晶界交隅处发生晶化与共晶转变。回火后矫顽力的提高与晶界的变化有关。  相似文献   

9.
A numerical formulation of solidification model which can predict the microsegregation and microstructural features for multicomponent alloys is presented. The model incorporates the kinetic features during solidification such as solute back diffusion, dendrite tip undercooling, and secondary arm coarsening. The model is dynamically linked to thermodynamic library for accurate input of thermodynamic data. The modeling results are tested against the directional solidification experiments for Mg-Al-Zn alloys. The experiments were conducted in the cooling rate range of 0.13 to 2.33 K/s and microstructural features such as secondary arm spacing, primary dendrite arm spacing, second phase fraction, and microsegregation were compared with the modeling results. Based on the model and the experimental data, a solidification map was built in order to provide guidelines for as-cast microstructural features of Mg-Al-Zn alloys in a wide range of solidification conditions.  相似文献   

10.
Microwave is an electromagnetic wave and consists of the electric and the magnetic fields.The microwave electric field interacts with dielectric materials and heat is generated due to the dielectric loss,which is a major mechanism of microwave heating of water.Microwave magnetic field interaction with materials has to be discussed in terms of two different mechanisms.The first class is the induction current generation in(mainly)metallic materials,which gives rise the Joule heat,although the penetration distance into metals are limited within a microns or less.In this article,a characteristic application of microwave induction heating of metal thin film is presented.The second class is the microwave interaction with the ferro(or ferri)magnetic materials.Effect of ferromagnetic resonance(FMR)is taken into consideration as the fundamental heating mechanism of the ferro-magnetic materials.The FMR heating behavior of Fe3O4 is presented.Discussion is made for the phenomena observed in the experiments.  相似文献   

11.
The effects of Co as a substituent for Ni on microstructure and electrochemical capacity of hydrogen storage alloys MI(NiCoMnAl)5.4 at -30~ 80 ℃, in which the content of Co was 0, 1.31%, 2.63%, 3.94%, 5.25%, and 6.56% (mass fraction), respectively, were reported. All of the alloys were prepared by vacuum induction melting followed by melt-spinning. It is found that the electrochemical capacity of alloys at different temperature depends upon the compositions and preparation methods. The electrochemical capacity of alloys increases at higher temperature (40 ~ 80 ℃ )and decreases at lower temperature ( - 30 ~ 0 ℃ ) with an increasing cobalt content. With an increasing temperature,melt-spinning is more favorable for improved capacity of the alloys than casting. Analyses of the charging/discharging potential curves illustrate that higher cobalt content and melt-spinning techniques are more effective to increase the capacity at higher temperature because of the higher hydrogen evolution potential. On the contrary, the capacity of alloys at lower temperature can be increased by decreasing cobalt content and casting, which is ascribed to higher hydrogen evolution potential and delayed hydrogen evolution reaction, as well as reduced potential drop in the charging/discharging process.XRD patterns confirm that all of the specimens present a single hexagonal CaCu5-type structure and an increased lattice parameters with increasing Co content. The FWHM of the main peak of melt-spun ribbons reduces because of more homogeneous composition and less lattice strain defects.  相似文献   

12.

This study examined the microstructural evolution and castability of Al–Mg–Si ternary alloys with varying Si contents. Al–6Mg–xSi alloys (where x = 0, 1, 3, 5, and 7; all compositions in mass pct) were examined, with Al–6 mass pct Mg as a base alloy. The results showed that in the ternary alloys with Si ≤ 3 pct, the solidification process ended with the formation of eutectic α-Al–Mg2Si phases generated by a univariant reaction. However, in the case of ternary alloys with Si > 3 pct, solidification was completed with the formation of α-Al–Mg2Si–Si ternary eutectic phases generated by a three-phase invariant reaction. In addition to the eutectic Mg2Si phases, the primary Mg2Si phases formed in each of the ternary alloys, and the size of both sets of phases increased with increasing Si content. The two-phase eutectic α-Al–Mg2Si nucleated from the primary Mg2Si phases. The inoculated Al–6Mg–1Si alloy had the smallest grain size. Moreover, the grain-refining efficacy of the Al–5Ti–B master alloy in the ternary alloys decreased with increasing Si content in the alloys. Despite the poisoning effect of Si on the potency of TiB2 compounds in the inoculated Al–6Mg–1Si alloy, the grain size of the alloy was slightly smaller than that of the Al–6Mg binary alloy. This resulted from the increasing growth restriction factor (induced by Si addition) of the Al–6Mg–1Si alloy. In terms of the castability, the examined alloys showed different levels of susceptibility to hot tearing. Among the alloys, the ternary Al–6Mg–5Si alloy exhibited the highest susceptibility to hot tearing, whereas the Al–6Mg–7Si exhibited the lowest. The severity of hot tearing initiated by the unraveling of the bifilm was determined by the freezing range, grain size, and the amount of eutectic phases at the end of the solidification process.

  相似文献   

13.
Metallurgical and Materials Transactions B - The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials...  相似文献   

14.
The interactions of La(Ⅲ), Pr(Ⅲ), Nd(Ⅲ), Sm(Ⅲ), Eu(Ⅲ), Gd(Ⅲ), Dy(Ⅲ), and Yb(Ⅲ) with cytosine, 5-bromocytosine, 5-azacytosine and 5-flurocytosine as primary ligands (L) and guanine (A) as secondary ligand for both binary (1:1) as well as ternary (1:1:1) systems were investigated by potentiometric equilibrium measurements at 25, 35 and 45 ℃ in aqueous solution (ionic strength, μ=0.1 mol·dm-3 NaNO3). The stability constants of the binary (1:1) and ternary (1:1:1) metal-ligand complexes follow the following order La<Pr<Nd<Sm<Eu>Gd<Dy>Yb. Results also indicate that the ternary lanthanide complexes of La(Ⅲ), Pr(Ⅲ), Nd(Ⅲ), Sm(Ⅲ), Eu(Ⅲ), Gd(Ⅲ), Dy(Ⅲ), and Yb(Ⅲ) are more stable than corresponding binary lanthanide complexes. The enthalpy (Δhof) and entropy (Δsof) changes for the formation of binary and ternary complexes were calculated from temperature coefficient data. The ΔΔSof values are positive for all the metal ligand systems. The negative ΔΔHof values indicate the extra stability of the ternary complexes by the exothermic enthalpy changes (ΔΔSof=ΔTSof-ΔBSof and ΔΔHof=ΔTHof-ΔBHof where ΔTSof, ΔTHof and ΔBSof, ΔBHof are the entropy and enthalpy values associated with the ternary and binary complexes, respectively). It was also proposed that the guanine is bonded to metal ions through N1/C6=O and N7 whereas cytosine and its derivatives are bonded through N3 atoms in ternary complexes.  相似文献   

15.
通过研究一些带电体的电场和磁场在两个不同惯性系之间的相对变换 ,得到某些反映运动物体电场磁场公式 ,并阐明电场和磁场的相对性和统一性  相似文献   

16.
The influence of a transverse magnetic field (B < 1 T) on the solidification structure in directionally solidified Al-Si alloys was investigated. Experimental results indicate that the magnetic field caused macrosegregation, dendrite refinement, and a decrease in the length of the mushy zone in both Al-7 wt pct Si alloy and Al-7 wt pct Si-1 wt pct Fe alloys. Moreover, the application of the magnetic field is capable of separating the Fe-rich intermetallic phases from Al-7 wt pct Si-1 wt pct Fe alloy. Thermoelectric magnetic convection (TEMC) was numerically simulated during the directional solidification of Al-Si alloys. The results reveal that the TEMC increases to a maximum ( \( u_{\rm{max} } \) ) when the magnetic field reaches a critical magnetic field strength ( \( B_{\rm{max} } \) ), and then decreases as the magnetic field strength increases further. The TEMC exhibits the multi-scales effects: the \( u_{\rm{max} } \) and \( B_{\rm{max} } \) values are different at various scales, with \( u_{\rm{max} } \) decreasing and \( B_{\rm{max} } \) increasing as the scale decreases. The modification of the solidification structure under the magnetic field should be attributed to the TEMC on the sample and dendrite scales.  相似文献   

17.
Metallurgical and Materials Transactions B - The thermal conductivity of molten Cu-Co alloy with different compositions around the liquidus line temperature was measured by the periodic...  相似文献   

18.
在400—580℃温度范围内用氢气将草酸钴和氧化钴还原为金属钴粉,研究了原料粒度和还原温度对钴粉粒度、比表面、松装密度和摇实密度的影响,讨论了还原期间在不同原料表面上发生的局部化学反应机理。结果表明,用草酸钴可制得具有费氏粒度0.5μm、BET 比表面400000cm~2/cm~3的极细钴粉,得自草酸钴的钴粉还具有易于研磨的脆性多孔结构。对于形成多孔产物相的固体物质的分解和还原反应,作者推出了产物核心粒度的计算式。D=1.96(V′/V~p)~(1/2)(G/N)~(1/3)=1.96(V′/V~p)~(1/2)·A·e~(-(E_g-E_(?))/(3RT))  相似文献   

19.
Cobalt nanopowder is very promising for use in science, engineering, industry, and medicine. The present study focuses on the kinetics of nanopowder production by the reduction of cobalt oxide with hydrogen in an electromagnetic field, under the action of a bed of ferromagnetic particles rotating in the electromagnetic field. Cobalt oxide (Co3O4) nanopowder is obtained by the thermal decomposition of cobalt hydroxide Co(OH)2 deposited from 10% ionic solutions of cobalt nitrate Co(NO3)2 and sodium hydroxide NaOH at 20°C, with pH 9. Cobalt nanoparticles are produced from Co3O4 nanopowder in a modified UAP-3 vortical bed system with a built-in furnace and flow-through reactor. The amplitude of the magnetic induction within the reactor is 0.16 T. The experimental reduction temperature is selected on the basis of thermogravimetric analysis of the initial Co(OH)2 sample. The kinetic parameters of hydrogen reduction with linear heating and in isothermal conditions are calculated on the basis of the Freeman–Carroll and McKewan models, respectively. The rate of cobalt- nanopowder production slows in an electromagnetic field (by up to 14% at 250°C), on account of hindrance to the adsorption of hydrogen atoms at the surface of the metallic nanoparticles formed. However, mechanical stimulation in a vortical bed increases the rate of the process by a factor of 4–5 as a result of activation. The properties of the initial material and the products are studied by thermogravimetric analysis, X-ray diffraction analysis, scanning electron microscopy, and measurement of the specific surface by low-temperature nitrogen absorption. In the reduction of the samples, smaller cobalt nanoparticles are produced in the presence of an electromagnetic field. Mechanical stimulation in a vortical bed results in aggregation of the cobalt nanoparticles and the formation of microgranules.  相似文献   

20.
Russian Journal of Non-Ferrous Metals - The results of studying the structure and mechanical properties of A356.0 and A413.1 cast aluminum alloy subjected to a pulsed magnetic field of different...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号