共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrew J. Thuman Thomas W. Gallagher Timothy M. Morse 《Canadian Metallurgical Quarterly》2006,132(9):1051-1060
The development of water quality models, and also the nature of water quality impairment, is uniquely presented in the point source dissolved oxygen (DO) modeling completed in the Jackson River (Virginia) over the past 50?years. Various water quality modeling studies have been completed in the Jackson River over the years starting with the earliest of modeling frameworks, the Streeter–Phelps equation (1950s and 1960s); progressing to a biochemical oxygen demand–DO model (1970s and 1990s) including diurnal photosynthetic effects (DIURNAL); a Monte Carlo DO analysis using the DIURNAL model (1990s); to the most recent modeling that is currently developing a periphyton model to assess the impact of nutrient loadings on the periphyton community and ultimately DO levels (2000). These early modeling studies were completed by such modeling forefathers as Clarence J. Velz and Donald J. O'Connor, both completing their work at academic institutions (Manhattan College and the University of Michigan) and private consulting firms (Hydroscience and HydroQual, Inc.). Interesting to note is that Earle B. Phelps taught Clarence J. Velz, Donald J. O’Connor’s eventual professor at Manhattan College. Other work completed on the river by early environmental engineers included reaeration studies by Ernest C. Tsivoglou (1966) and the first activated sludge wastewater treatment design for a pulp and paper mill by Wesley Eckenfelder (1950s). The studies investigated: how to improve existing DO conditions in the river; the effects of color reductions on diurnal DO swings; proposed upstream flow regulation effects on water quality and river temperature; and the impact of instream oxygen addition. 相似文献
2.
Suzanne M. Kish Justin Bartlett John J. Warwick Alan McKay Chris Fritsen 《Canadian Metallurgical Quarterly》2006,132(10):1366-1375
Nutrient loads enter the lower Truckee River of western Nevada, affecting the growth of attached algae (periphyton) which causes depressed nighttime dissolved oxygen (DO) levels. The lower Truckee River is home to the endangered cui-ui and threatened Lahontan cut-throat trout, with DO standards being established to in part protect these species. Hydrodynamics, nutrient concentrations, periphyton biomass, and DO data spanning August 2000–December 2001 were used to calibrate and verify a modified version of the Water Quality Analysis Simulation Program Version 5 (WASP5). Under typical loading conditions the periphyton community is nitrogen limited, however nitrogen loading from an upstream wastewater treatment facility increased greatly during the analysis period due to approved site construction activities (discharge permit excursion) causing the periphyton community to temporarily become phosphorus limited. The developed modeling approach, with limited calibration, was able to accurately track dynamic system responses. Removing the impact of the noted discharge permit excursion resulted in a minimum computed DO value of 4.13?mg/L, occurring at the downstream end of the modeling domain on August 8, 2001. Additionally removing the impact of all nutrient loads from area agriculture resulted in a predicted minimum DO value of 4.54?mg/L, while also shifting its location significantly upstream and its timing to April 26, 2001. Meeting all prescribed DO standards required establishing a minimum in-stream flow value of 1.81?m3/s (64.0?ft3/s) downstream of Derby Dam. 相似文献
3.
The “approximate delta method” is a simple procedure for simultaneous calculation of the stream reaeration coefficient, primary production rate, and respiration rate from a single-station stream diurnal profile of dissolved oxygen (DO). It approximates the exact graphs of results for the “delta method” reported in 1991 by Chapra and Di Toro by means of simple logistic curve-fitting approximations. The necessity of reading graphs or of obtaining numerical solutions is thereby avoided, so making it suitable for inclusion in a decision support system, particularly for streams reaeration coefficients less than 10?day?1 and for moderate photoperiods (10–14?h). Worked examples are given for streams in the USA and in New Zealand. Results are used to show that the constellation of parameters for the three fundamental processes is much more important than their individual values in calculating diurnal DO profiles. Independent measurement of the reaeration coefficient enhances the utility of the method, by enabling separate calculation of production and respiration rates. 相似文献
4.
Daniel F. Turner Gregory J. Pelletier Brian Kasper 《Canadian Metallurgical Quarterly》2009,135(8):645-652
Nutrient enrichment of the South Umpqua River, Oregon was linked to periphyton growth and large diel fluctuations in dissolved oxygen and hydrogen ion (pH) concentrations using the water quality model QUAL2Kw. The available data provide a good case study for the relatively new water quality model. QUAL2Kw simulates a dynamic diel heat budget and water quality kinetics for a one-dimensional, steady-flow system and is part of a family of models meant to serve as an update to the widely used QUAL2E. The model was used to quantify nonpoint source loading, determine the pollutant of concern, estimate natural conditions, and calculate a phosphorus total maximum daily load during summer, low-flow conditions. Control of both nonpoint and point sources is required to achieve the low instream phosphorus concentrations necessary to meet water quality criteria. To our knowledge, this is the first paper that reports on the application of a model for computing the maximum allowable load necessary to manage the diel variation in pH. 相似文献
5.
Most commonly used river water quality models for biochemical oxygen demand (BOD) and dissolved oxygen (DO) simulations are mainly based on advection, decay, settling, and loading functions. Using these concepts, refined river water quality models for BOD and DO simulations are developed in the present work considering a large number of physically based parameters and input variables. The refined models developed can be transformed to some of the commonly used river water quality models, if physically based parameters and input variables are omitted or removed. To test the applicability of the refined models developed and commonly used models, a total of 732 water quality and flow data sets are collected during March 1999–February 2000 from 22 sampling stations of the River Kali in India. River Kali is a highly polluted river in India and receives continuous inflow of untreated point source pollution from municipal and industrial wastes and nonpoint source pollution from agricultural areas. Newton–Raphson technique is used to optimize the model parameters during calibration and the performance of different models are evaluated using error estimation, viz. standard error and mean multiplicative error, and correlation statistics (r2). The results indicate that the BOD–DO models proposed by Camp in 1963 provide better results in comparison to other commonly used models. Moreover, the refined models developed for BOD and DO simulations minimize error estimates and improve correlation between observed and computed BOD and DO values of River Kali. 相似文献
6.
Omar I. Abdul-Aziz Bruce N. Wilson John S. Gulliver 《Canadian Metallurgical Quarterly》2007,133(7):698-710
A common difficulty in stream health assessments is the scarcity of real-time dissolved oxygen (DO) data. Discrete DO measurements, collected at times often imposed by sampling constraints, are difficult to use in assessments because of diurnal variations. An empirical model is developed here to adjust these discrete measurements to a common time-reference value using an extended stochastic harmonic analysis (ESHA) algorithm, which was originally formulated with a fraction of DO saturation model by the authors. The model was calibrated and validated for different stream sites across Minnesota, incorporating effects of different ecoregions and variable drainage areas. Data were normalized to increase the general applicability of the fitted parameters. Model calibration for five long record stations accurately represented observed diurnal variations in DO. The root-mean-square error (RMSE) for predicting hourly DO ranged from 0.53?to?0.80?mg/L and for predicting DO at a standard time ranged from 0.44?to?0.91?mg/L. Estimated model parameters were robust in terms of both spatial and temporal variations. Analytical as well as numerical analyses of parameter uncertainties were performed using sensitivity coefficients. Model validation with independent data for eight different Minnesota streams was performed using three different approaches for estimating parameters. The best approach considered both ecoregional location and watershed size to select representative model parameters. The RMSE for predicting hourly DO and standard DO respectively ranged from 0.53?to?1.65?mg/L and 0.00?to?1.83?mg/L. The developed model is a useful tool for total maximum daily load assessment of aquatic ecosystem health across a range of temporal and spatial scales. It is more elegant and simpler than the application of the ESHA algorithm for the fraction of DO saturation model. 相似文献
7.
Meng Xia Paul M. Craig Blake Schaeffer Andrew Stoddard Zhijun Liu Machuan Peng Hongyan Zhang Christopher M. Wallen Nathan Bailey Jan Mandrup-Poulsen 《Canadian Metallurgical Quarterly》2010,136(10):1032-1044
Environmental Fluid Dynamics Code, a numerical estuarine and coastal ocean circulation hydrodynamic and eutrophication model, was used to simulate the distributions of dissolved oxygen (DO), salinity, water temperature, and nutrients in the Caloosahatchee River Estuary. Modeled DO, salinity, and water temperature were in good agreement with field observational data from the Florida Department of Environmental Protection and South Florida Water Management District. Sensitivity analyses identified the effects of river discharge, atmospheric winds, and tidal forcing on the spatial and temporal distributions of DO. Simulation results indicated that vertical mixing due to wind forcing increased the bottom DO concentration. River discharge enhanced stratification in deep locations but propagated vertical mixing in the shallow upper estuary. Finally, tidal forcing heavily influenced bottom layer DO concentrations throughout the whole river estuary. 相似文献
8.
The majority of variable estimation studies in water resources investigate the temporal variation of the variable. In this study, we examined the depth-dependent estimation of a lake’s dissolved oxygen (DO) using two artificial neural network (ANN) methods: (1) the radial basis functions (RBFs) and the feed forward back-propagation (FFBP), and (2) the multilinear regression (MLR). We tested two different input layer configurations. In the first case, we employed all other available lake parameters—total dissolved solids (TDS), pH, conductivity, lake depth, and lake temperature—to estimate DO. In the second case, we considered only depth and temperature to estimate DO. The performance evaluation criteria of these two cases were close. ANN estimation performances were noticeably superior to those of MLR, as reflected in the performance evaluation criteria and DO lake depth plots. We saw that the spatial variation of the lake’s DO can be captured by ANNs satisfactorily, even if available measurements are quite limited. 相似文献
9.
Near-field mixing downstream of a multiport diffuser in a wide shallow river was studied with a field dye test. Dye concentrations at different depths and lateral locations were measured. The near-field mixing was analyzed in four zones: the free jet zone, the jet surface-impingement zone, the merging zone, and the vertical mixing zone. Analytical models were proposed to derive the three-dimensional concentration field after the jets impinged the water surface. After the impingement, the dye concentration can be predicted well by treating the multiple jets as a simple mathematical summation of individual jets. The vertical mixing zone was dominated by the riverbed friction-induced turbulence, with little effect from the effluent momentum and buoyancy. The results of the field data were also used to validate the applicability of some existing models for multiport diffusers. 相似文献
10.
Keisha Lisbon Michael McKean Sangeetha Shekar Spyros A. Svoronos Ben Koopman 《Canadian Metallurgical Quarterly》2002,128(4):391-394
Nitrogen is removed in suspended growth wastewater treatment systems by passing mixed liquor from an aerobic zone in which nitrification takes place to an anoxic zone in which denitrification takes place. Following the switch from oxygen to nitrate as terminal electron acceptor, a diauxic lag may occur. The present study tested the hypothesis that lower dissolved oxygen concentrations in the aerobic phase lead to shorter diauxic lags. Bacterial cultures exposed to low dissolved oxygen concentrations (<0.70 mg/L) during the aerobic growth phase had significantly shorter diauxic lags than cultures grown at air saturation. Furthermore, these cultures generally grew faster during the anoxic phase. These results indicate that the effect of dissolved oxygen concentration in aerobic reactors on diauxic lags and anoxic growth rates in anoxic reactors should be considered in the design and operation of nitrogen-removing, suspended growth biological treatment processes. 相似文献
11.
Density Intrusion and Variation in Dissolved Oxygen Concentrations in a Bay with a Sill at Its Mouth
This paper describes the influence of water outside a bay on water quality within the bay for a typical enclosed bay with a sill at its mouth. The influence of water outside Ohfunato Bay, Japan was expressed in a one-dimensional vertical dissolved oxygen (DO) model as the rate of seawater exchange caused by tides and the density difference between water inside and outside the bay. A nonhydrostatic, three-dimensional model was used to confirm the occurrence of density intrusions. A one-dimensional vertical DO model was used to examine long-term changes in DO concentrations in the bottom layer of the bay. Results indicated that seawater exchange caused by density differences had a significant effect on the formation and disappearance of anoxic water in the bay’s bottom layer. 相似文献
12.
High-Frequency Diel Dissolved Oxygen Stream Data Modeled for Variable Temperature and Scale 总被引:1,自引:0,他引:1
J. V. Loperfido Craig L. Just Jerald L. Schnoor 《Canadian Metallurgical Quarterly》2009,135(12):1250-1256
Diel dissolved oxygen (DO) concentrations and temperature were sensed at high-frequency and modeled in an eastern Iowan stream, Clear Creek, in an agricultural setting. The magnitude of the diel changes in DO and temperature were largest at the upstream (headwater) station. Inclusion of temperature change factors increased the accuracy of modeling results and yielded estimates of the reaeration rate constant, primary production rate, and respiration rate. The DO modeling of the high-frequency measurements (15-min intervals) revealed a temperature-driven nonlinear reaeration process that led to increases in nighttime DO concentrations. The DO modeling results from three sensing stations in the watershed revealed decreasing trends in primary productivity, respiration, and the reaeration rate constant with increasing drainage area. Light extinction from suspended solids was the main factor limiting net primary production. As a result, the P/R ratio also decreased with increasing drainage area. High-frequency sensor data and DO modeling revealed the effects of temperature and watershed scale on the primary factors that dictate diel DO dynamics in a stream setting. 相似文献
13.
Michael Piasecki 《Canadian Metallurgical Quarterly》2004,130(11):1322-1334
A method is presented to compute sensitivities of in-stream dissolved oxygen (DO) with respect to perturbations in the load vector and the reaction coefficients that make up the eutrophication cycle. It is shown that the direct sensitivity method, i.e., the repetitive solution of the direct problem, produces the desired information, however at a large computational cost. The utilization of the adjoint sensitivity method proves to be a much more efficient way to compute these sensitivities as large subsets of the sensitivity information domain can be easily extracted with just a few runs. It is found that for the given problem setup, in-stream DO is most sensitive to ammonia, effluent DO, algae, and carbonaceous biochemical oxygen demand (CBOD) loads. Additionally, the computed sensitivities vary considerably in their general trend over the simulation time. Sensitivities also are computed with respect to the reaction coefficients (26 total) that govern the interdependency of all constituents. Sediment oxygen demand proves to be the coefficient with the highest influence that is three orders of magnitude higher than the next set of coefficients comprised of reaeration, CBOD degradation, nitrification, and denitrification. All other coefficients have a negligible influence on DO concentrations. Computations are carried out using a two-dimensional model formulation applied to a long rectangular channel with varying width and slope and periodic but unsteady flow conditions. 相似文献
14.
Dissolved Oxygen Demand at the Sediment-Water Interface of a Stream: Near-Bed Turbulence and Pore Water Flow Effects 总被引:1,自引:0,他引:1
A microbial dissolved oxygen (DO) uptake model was developed for a stream bed, including the effect of turbulence in the flow over the bed and pore water flow in the porous bed. The fine-grained sediment bed has hydraulic conductivities 0.01 ≤ k ≤ 1??cm/s, i.e., sediment particle diameter 0.006 ≤ ds ≤ 0.06??cm. The pore water flow is driven by pressure fluctuations at the sediment-water interface, mostly attributable to near-bed coherent motions in the turbulent boundary layer above the sediment bed. An effective mass transfer coefficient (De) coupled to a pore water flow model was used in the DO transport and DO uptake model. DO flux across the sediment-water interface and into the sediment, i.e., sedimentary oxygen demand (SOD), was related to hydraulic conductivity and microbial oxygen uptake rate in the sediment and shear velocity at the sediment-water interface. Simulated SOD values were validated against experimental data. For hydraulic conductivities of the sediment bed up to k ≈ 0.01??cm/s, the pore water flow effect on SOD was found negligible. Above this threshold, the effective mass (DO) transfer coefficient in the sediment bed (De) becomes larger as the hydraulic conductivity (k) becomes larger as the interstitial flow velocities increase; consequently, DO penetration depth increases with larger hydraulic conductivity of the sediment bed (k), and SOD increases as well. The enhancement of vertical DO transport into the sediment bed is strongest near the sediment-water interface, and rapidly diminishes with depth into the sediment layer. An increase in shear velocity at the sediment-water interface also enhances DO transfer. Shear velocity increases at the sediment-water interface will raise SOD regardless of the maximum oxidation rate if the hydraulic conductivity is above the threshold of k ≈ 1??cm/s. The relationship is nearly linear when U*<0.8??cm/s. At shear velocity U* = 1.6??cm/s, SOD for oxidation rates μ = 1000 and 2000??mg?l-1?d-1 are almost five times larger than those with no pore water flow. When pore water transport of DO is not limiting, SOD is a linear function of oxygen demand rate μ in the sediment when 0 ≤ μ ≤ 200??mg?l-1?d-1. 相似文献
15.
Michael Piasecki 《Canadian Metallurgical Quarterly》2004,130(11):1335-1344
This paper presents the development of an efficient strategy for achieving in-stream dissolved oxygen (DO) water quality standards (WQSs) via optimized point-load control strategies using the adjoint method. To this end, a least-squares-type objective function is formulated that measures the difference between desired (WQSs) and current DO concentrations at strategically selected monitoring points in the domain. The goal is to minimize the difference between actual DO concentration and the WQS, hence allowing time-variant loadings to utilize the assimilative capacity of the receiving water body at an optimal level. Time-variant discharge rates for a number of discharge locations are considered as control parameters, while different zone-specific critical DO levels are imposed as constraints. The selection of the control is kept flexible and a number of different scenarios are tested. First, only carbonaceous biochemical oxygen demand is used, which allows for a reduction of the number of equations that need to be solved. In the other tests, all constituents are switched on and different variables at each load node are selected as a control by first varying the concentrations individually, and then linking them through control of the volumetric flow rate. Optimization is achieved using a conjugate gradient search method, for which the gradients are computed through the solution of both the direct and adjoint problems. It is shown that the large amount of gradient information (parameter space has a dimension of several thousands) can be computed very efficiently using the adjoint, and that optimized results are achieved after only a few iterations irrespective of the initial guess. Computations are carried out using both two-dimensional model formulation applied to a long rectangular channel with varying width and slope and a model for the upper Potomac River estuary. 相似文献
16.
Ben L. O’Connor Miki Hondzo Judson W. Harvey 《Canadian Metallurgical Quarterly》2009,135(12):1304-1314
Traditionally, dissolved oxygen (DO) fluxes have been calculated using the thin-film theory with DO microstructure data in systems characterized by fine sediments and low velocities. However, recent experimental evidence of fluctuating DO concentrations near the sediment-water interface suggests that turbulence and coherent motions control the mass transfer, and the surface renewal theory gives a more mechanistic model for quantifying fluxes. Both models involve quantifying the mass transfer coefficient (k) and the relevant concentration difference (ΔC). This study compared several empirical models for quantifying k based on both thin-film and surface renewal theories, as well as presents a new method for quantifying ΔC (dynamic approach) that is consistent with the observed DO concentration fluctuations near the interface. Data were used from a series of flume experiments that includes both physical and kinetic uptake limitations of the flux. Results indicated that methods for quantifying k and ΔC using the surface renewal theory better estimated the DO flux across a range of fluid-flow conditions. 相似文献
17.
Cost-Effective Approach for Continuous Major Ion and Nutrient Concentration Estimation in a River 总被引:1,自引:0,他引:1
Major ion and nutrient concentration monitoring and estimation are important factors in management and interpretations on river health, particularly in the context of total maximum daily load limits. Spatial and temporal (daily, seasonally, yearly, etc.) variations commonly complicate investigations and can produce unrepresentative results, particularly in systems with large seasonal or daily variation in river parameters or concentrations as a result of physical loading or biogeochemical activity (e.g., photosynthesis and respiration). This study combines an observed relationship between electrical conductivity and major ions, including nitrate, and continuous colorimetric estimation of ammonium and phosphate to permit cost-effective real-time estimation of river concentrations for major ions and nutrients for surface water quality monitoring. Data collected from sites both up- and downstream of a major city were used to evaluate the method. Constant total dissolved solids (TDS) to electrical conductivity (EC) relationships were observed at both the upgradient (TDS = 696EC; r2 = 0.93) and downgradient (TDS = 684EC; r2 = 0.90) sites. The resulting predicted estimations of major ion and nutrient concentrations for each site had average errors of less than 5%. Combining this method with a modified continuous colorimetric method for ammonia and phosphate allows for the continuous estimation of major ion and nutrient concentrations in a river system. 相似文献
18.
Enrique Ortiz Richard G. Luthy David A. Dzombak John R. Smith 《Canadian Metallurgical Quarterly》2004,130(2):126-135
The diffusive release of polychlorinated biphenyls (PCBs) from sediments to water under low-flow conditions was measured for surficial sediments with different PCB concentrations collected from the Grasse River near Massena, N.Y. Data on PCB sediment-water equilibrium partitioning and PCB mass release flux from sediments were used to assess the extent and mass transfer rate of PCB release under low-flow conditions in the Grasse River. Microcosm studies were employed to evaluate the release flux of PCBs under quiescent conditions for various river sediments and sediment mixtures. The observed total-PCB release fluxes ranged from about 1 to 20 mg/m2?year, showing predominantly dichloro- through tetrachlorobiphenyls. Analyses of water column samples from the Grasse River under low-flow conditions also indicated the predominance of dichloro- through tetrachlorobiphenyls as in the microcosm tests. Data on PCB equilibrium partitioning between water and sediment were used to estimate sediment porewater concentrations, and these data combined with the microcosm flux data were used to estimate average, aqueous-boundary-layer total-PCB mass transfer coefficients of 0.3–1.5 cm/day. These values are consistent with estimates of mass transfer coefficients based on aqueous-boundary-layer correlations, and with PCB mass transfer coefficients inferred from the field data for low-flow conditions in the fall and winter (approximately 2 cm/day). The correspondence of the laboratory results with the field measurements and mass transfer rates demonstrates the usefulness of the microcosm technique for estimating fluxes of PCBs from river sediments under low-flow minimum bioturbation conditions. 相似文献
19.
The intermediate field mixing characteristics of the Gold Bar Wastewater Treatment Plant effluent into the North Saskatchewan River at Edmonton were evaluated. This region may be considered to be the early part of the transverse mixing region where local channel characteristics are important. An extensive field study was conducted to delineate the bathymetry of the study area and evaluate the mixing characteristics by means of a steady state dye test. The topographic and limited velocity results of the field study were used to create and validate a depth-averaged hydrodynamic model of the study reach in order to extract streamtube information. The results from the hydrodynamic model were used to interpret the mixing characteristics of the study reach as well as extract channel characteristics. From the analysis it is evident that the distribution of effective transverse mixing coefficient is highly dependent on local river conditions. The use of the hydrodynamic model to extract channel characteristics provided a reasonable estimate of mixing characteristics without requiring detailed field velocity data. The trade-off is more detailed bathymetry data is required to have a realistic model. Plume averaged channel characteristics rather than cross sectional averaged were shown to produce more realistic transverse mixing coefficients. Assumed Gaussian profile distributions were successfully applied suggesting that for a bank discharge if the maximum bank concentration and mass flux are known this technique could be applied. 相似文献
20.
Joseph S. Denkenberger David M. O’Donnell Charles T. Driscoll Steven W. Effler 《Canadian Metallurgical Quarterly》2007,133(5):498-506
Water quality impacts of zebra mussel metabolism over an infested 15?km reach of the Seneca River, N.Y., are documented, based on vertically and temporally detailed robotic monitoring at the reach boundaries during the summer through early fall intervals of 2?years. Substantial reductions over the study reach are documented for dissolved oxygen (DO), pH, fluorometric chlorophyll a, and turbidity, associated with the metabolism of this invader. Violations of New York State water quality standards for DO that would not be resolved by traditional manual monitoring programs were observed. The loss of assimilative capacity caused by the zebra mussel invasion is confounding rehabilitation efforts for a downstream polluted lake that had considered diversion of municipal effluent to the river. The critical role robotic monitoring units would play in an automated control system for an innovative strategy of time-variable river discharge of the effluent is described. Near-real time robotic monitoring provides a more detailed understanding of the impacts of zebra mussels on water quality than traditional less intensive manual measurements. 相似文献