首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concurrence, as one of the entanglement measures, is a useful tool to characterize quantum entanglement in various quantum systems. However, the computation of the concurrence involves difficult optimizations and only for the case of two qubits, an exact formula was found. We investigate the concurrence of four-qubit quantum states and derive analytical lower bound of concurrence using the multiqubit monogamy inequality. It is shown that this lower bound is able to improve the existing bounds. This approach can be generalized to arbitrary qubit systems. We present an exact formula of concurrence for some mixed quantum states. For even-qubit states, we derive an improved lower bound of concurrence using a monogamy equality for qubit systems. At the same time, we show that a multipartite state is k-nonseparable if the multipartite concurrence is larger than a constant related to the value of k, the qudit number and the dimension of the subsystems. Our results can be applied to detect the multipartite k-nonseparable states.  相似文献   

2.
We present a lower bound of concurrence for four-partite systems in terms of the concurrence for \(M\, (2\le M\le 3)\) part quantum systems and give an analytical lower bound for \(2\otimes 2\otimes 2\otimes 2\) mixed quantum sates. It is shown that these lower bounds are able to improve the existing bounds and detect entanglement better. Furthermore, our approach can be generalized to multipartite quantum systems.  相似文献   

3.
Determining relationships between different types of quantum correlations in open composite quantum systems is important since it enables the exploitation of a type by knowing the amount of another type. We here review, by giving a formal demonstration, a closed formula of the Bell function, witnessing nonlocality, as a function of the concurrence, quantifying entanglement, valid for a system of two noninteracting qubits initially prepared in extended Werner-like states undergoing any local pure-dephasing evolution. This formula allows for finding nonlocality thresholds for the concurrence depending only on the purity of the initial state. We then utilize these thresholds in a paradigmatic system where the two qubits are locally affected by a quantum environment with an Ohmic class spectrum. We show that steady entanglement can be achieved and provide the lower bound of initial state purity such that this stationary entanglement is above the nonlocality threshold thus guaranteeing the maintenance of nonlocal correlations.  相似文献   

4.
In this paper, we generalize the results of Oh (Phys Lett A 373:644–647, 2009) to Dzyaloshinskii–Moriya model under non-uniform external magnetic field to investigate the relation between entanglement, geometric phase (or Berry phase) and quantum phase transition. We use quaternionic representation to relate the geometric phase to the quantum phase transition. For small values of DM parameter, the Berry phase is more appropriate than the concurrence measure, while for large values, the concurrence is a good indicator to show the phase transition. On the other hand, by increasing the DM interaction the phase transition occurs for large values of anisotropy parameter. In addition, for small values of magnetic field the concurrence measure is appropriate indicator for quantum phase transition, but for large values of magnetic field the Berry phase shows a sharp changes in the phase transition points. The results show that the Berry phase and concurrence form a complementary system from phase transition point of view.  相似文献   

5.
We present a method to quantify quantum correlations in arbitrary systems of indistinguishable fermions using witness operators. The method associates the problem of finding the optimal entanglement witness of a state with a class of problems known as semidefinite programs, which can be solved efficiently with arbitrary accuracy. Based on these optimal witnesses, we introduce a measure of quantum correlations which has an interpretation analogous to the Generalized Robustness of entanglement. We also extend the notion of quantum discord to the case of indistinguishable fermions, and propose a geometric quantifier, which is compared to our entanglement measure. Our numerical results show a remarkable equivalence between the proposed Generalized Robustness and the Schliemann concurrence, which are equal for pure states. For mixed states, the Schliemann concurrence presents itself as an upper bound for the Generalized Robustness. The quantum discord is also found to be an upper bound for the entanglement.  相似文献   

6.
We study monogamy relations for arbitrary dimensional multipartite systems. Monogamy relations based on concurrence and concurrence of assistance for any dimensional \(m_1\otimes m_2\otimes \cdots \otimes m_{N}\) quantum states are derived, which give rise to the restrictions on the entanglement distributions among the subsystems. Besides, we give the lower bound of concurrence for four-partite mixed states. The approach can be readily generalized to arbitrary multipartite systems.  相似文献   

7.
We study the concurrence of four-qubit quantum states and provide analytical lower bounds of concurrence in terms of the monogamy inequality of concurrence for qubit systems. It is shown that these lower bounds are able to improve the existing bounds and detect entanglement better. The approach is generalized to arbitrary qubit systems.  相似文献   

8.
The question of what constitutes a ‘system’ is foundational to quantum measurement theory. Environment-induced superselection or ‘einselection’ has been proposed as an observer-independent mechanism by which apparently classical systems ‘emerge’ from physical interactions between degrees of freedom described completely quantum mechanically. It is shown here that einselection can only generate classical systems if the ‘environment’ is assumed a priori to be classical; einselection therefore does not provide an observer-independent mechanism by which classicality can emerge from quantum dynamics. Einselection is then reformulated in terms of positive operator-valued measures acting on a global quantum state. It is shown that this reformulation enables a natural interpretation of apparently classical systems as virtual machines that requires no assumptions beyond those of classical computer science.  相似文献   

9.
In this work, we perform a comparative study between the pairwise thermal entanglement (PWTE) and thermal quantum discord (TQD) to detect quantum phase transitions (QPT)s in a three-ligand spin-star structure whose magnetic interactions are described by different model Hamiltonians such as pure Dzyaloshinskii–Moriya (DM) interaction, anisotropic Heisenberg model (XXZ), and XXZ model with the different components of the DM interaction. Representing the system’s energy spectrum, we also focus on the critical points of QPTs where the ground-state level crossing happens in such models. Taking advantage of the concurrence as a measure of the PWTE, we found that while the ligand–ligand concurrence in all models is sensitive to the ground-state level crossing, the concurrence between the central qubit and a ligand cannot exhibit a QPT. In contrast, the TQD between any two arbitrary qubits can be a signature of a QPT in a large range of temperature. However, depending on the model studied, the behavior of the TQD at the critical point will be different. In addition, the TQD behaves quite differently than the concurrence. Moreover, in order to confirm the numerical results, we analytically study the entanglement behavior at the low-temperature limit as well as the high-temperature regime. We realized that, at the low-temperature limit, the maximum value of the concurrence is approximately equal to 0.33, independent of the model studied. On the other hand, at high-temperature regime, the concurrence is suppressed down to zero rapidly beyond a critical value of temperature. The dependence of the critical temperature on the DM interaction and the anisotropy parameter is obtained explicitly. Finally we show that there is a perfect agreement between the analytical results and the numerical predictions.  相似文献   

10.
We discuss a family of states describing three-qubit systems in a context of quantum steering phenomena. We show that symmetric steering cannot appear between two qubits—only asymmetric steering can appear in such systems. The main aim of this paper is to discuss the possible relations between the entanglement measures and steering parameter for two-mode mixed state corresponding to the qubit–qubit subsystem. We have derived the conditions determining boundary values of the negativity parametrized by concurrence. We show that two-qubit mixed state cannot be steerable when the negativity of such state is smaller than, or equal to, its boundary value. Finally, we have found ranges of the values of the mixedness measure, parametrized by concurrence and negativity for steerable and unsteerable two-qubit mixed states.  相似文献   

11.
The problem of detecting quantum signatures in the correlations formed in dynamical evolution of quantum bipartite systems receives a lot of attention in current literature. Generally speaking, the occurrence of correlations between two observables of a system does not necessarily reflect nonclassical behaviour. In this paper, the exact dynamics of a pair of uncoupled spins 1/2 interacting with a common spin 1/2 bath is investigated. Starting from a separable initial condition, the ability of the system to develop purely quantum correlations is brought to light. Physical interpretation of the concurrence function as well as a suggestion on how to measure it are given.  相似文献   

12.
In this paper, we study the concurrence of arbitrary-dimensional tripartite quantum states. An explicit operational lower bound of concurrence is obtained in terms of the concurrence of substates. A given example shows that our lower bound may improve the well-known existing lower bounds of concurrence. The significance of our result is to get a lower bound when we study the concurrence of arbitrary \(m\otimes n\otimes l\)-dimensional tripartite quantum states.  相似文献   

13.
Entanglement of formation and concurrence for mixed states   总被引:1,自引:0,他引:1  
We review some results on analytical computations of the measures for quantum entanglement: entanglement of formation and concurrence. We introduce some estimations of the lower bounds for the entanglement of formation in bipartite mixed states, and of lower bounds for the concurrence in bipartite and tripartite systems. The results on lower bounds for the concurrence are also generalized to arbitrary multipartite systems.  相似文献   

14.
We investigate transfer of nonclassical correlations through one-dimensional quantum networks for several schemes by employing concurrence and local quantum uncertainty as the measures and the extended Werner-like states as the initial resources. The exact dynamics of quantum correlations are derived, and the differences of dynamics between concurrence and local quantum uncertainty are analyzed. Besides, the influences of node number and initial parameters on the generation of quantum correlations between the two end nodes are discussed. Moreover, we explore the effects of duplex encodings and double channels on distribution of quantum correlations.  相似文献   

15.
We review some results on analytical computations of the measures for quantum entanglement: entanglement of formation and concurrence. We introduce some estimations of the lower bounds for the entanglement of formation in bipartite mixed states, and of lower bounds for the concurrence in bipartite and tripartite systems. The results on lower bounds for the concurrence are also generalized to arbitrary multipartite systems.  相似文献   

16.
Concurrence for infinite-dimensional quantum systems   总被引:1,自引:0,他引:1  
Concurrence is an important entanglement measure for states in finite-dimensional quantum systems that was explored intensively in the last decade. In this paper, we extend the concept of concurrence to infinite-dimensional bipartite systems and show that it is continuous and does not increase under local operation and classical communication.  相似文献   

17.
We demonstrate the possibility of controlling the success probability of a secret sharing protocol using a quantum cloning circuit. The cloning circuit is used to clone the qubits containing the encoded information and en route to the intended recipients. The success probability of the protocol depends on the cloning parameters used to clone the qubits. We also establish a relation between the concurrence of initially prepared state, entanglement of the mixed state received by the receivers after cloning scheme and the cloning parameters of cloning machine.  相似文献   

18.
We investigate the entanglement properties of the two magnon states and explicate conditions under which, the two magnon state becomes useful for several quantum communication protocols. We systematically study the temporal behaviour of concurrence to find out the effect of exchange interaction on entanglement. The two magnon state, which is potentially realizable in quantum dots using Heisenberg exchange interaction, is found to be suitable for carrying out deterministic teleportation of an arbitrary two qubit composite system. Further, conditions for which the channel capacity reaches “Holevo bound”, allowing four classical bits to be transmitted through two qubits are derived. Later, an unconventional protocol is given to demonstrate that this state can be used for sharing of a two qubit entangled state among two parties.  相似文献   

19.
This paper presents a realization algorithm for a class of complex transfer function matrices corresponding to physically realizable linear quantum systems. The aim of the realization algorithm is to enable a coherent quantum feedback controller, which has been synthesized using methods such as quantum H control or quantum LQG control, to be constructed using optical components such as cavities and phase-shifters. The class of linear quantum systems under consideration are passive linear quantum systems which can be described purely in terms of annihilation operators. The proposed algorithm enables a complex transfer function matrix to be realized as a pure cascade connection involving only cavities and phase-shifters.  相似文献   

20.
While the experimental detection of entanglement provides already quite a difficult task, experimental quantification of entanglement is even more challenging, and has not yet been studied thoroughly. In this paper we discuss several issues concerning bounds on concurrence measurable collectively on copies of a given quantum state. Firstly, we concentrate on the recent bound on concurrence by (Mintert and Buchleitner in Phys Rev Lett 98:140505/1–140505/4, 2007). Relating it to the reduction criterion for separability we provide yet another proof of the bound and point out some possibilities following from the proof which could lead to improvement of the bound. Then, relating concurrence to the generalized robustness of entanglement, we provide a method allowing for construction of lower bounds on concurrence from any positive map (not only the reduction one). All these quantities can be measured as mean values of some two-copy observables. In this sense the method generalizes the Mintert–Buchleitner bound and recovers it when the reduction map is used. As a particular case we investigate the bound obtained from the transposition map. Interestingly, comparison with MB bound performed on the class of ${4\otimes 4}While the experimental detection of entanglement provides already quite a difficult task, experimental quantification of entanglement is even more challenging, and has not yet been studied thoroughly. In this paper we discuss several issues concerning bounds on concurrence measurable collectively on copies of a given quantum state. Firstly, we concentrate on the recent bound on concurrence by (Mintert and Buchleitner in Phys Rev Lett 98:140505/1–140505/4, 2007). Relating it to the reduction criterion for separability we provide yet another proof of the bound and point out some possibilities following from the proof which could lead to improvement of the bound. Then, relating concurrence to the generalized robustness of entanglement, we provide a method allowing for construction of lower bounds on concurrence from any positive map (not only the reduction one). All these quantities can be measured as mean values of some two-copy observables. In this sense the method generalizes the Mintert–Buchleitner bound and recovers it when the reduction map is used. As a particular case we investigate the bound obtained from the transposition map. Interestingly, comparison with MB bound performed on the class of 4?4{4\otimes 4} rotationally invariant states shows that the new bound is positive in regions in which the MB bound gives zero. Finally, we provide measurable upper bounds on the whole class of concurrences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号