首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel approach for on-line adaptive tuning of power system stabilizer (PSS) parameters using radial basis function networks (RBFNs) is presented in this paper. The proposed RBFN is trained over a wide range of operating conditions and system parameter variations in order to re-tune PSS parameters on-line based on real-time measurements of machine loading conditions. The orthogonal least squares (OLS) learning algorithm is developed for designing an adequate and parsimonious RBFN model. The simulation results of the proposed radial basis function network based power system stabilizer (RBFN PSS) are compared to those of conventional stabilizers in case of a single machine infinite bus (SMIB) system as well as a multimachine power system (MMPS). The effect of system parameter variations on the proposed stabilizer performance is also examined. The results show the robustness of the proposed RBFN PSS and its ability to enhance system damping over a wide range of operating conditions and system parameter variations. The major features of the proposed RBFN PSS are that it is of decentralized nature and does not require on-line model identification for tuning process. These features make the proposed RBFN PSS easy to tune and install.  相似文献   

2.
A fuzzy basis function network (FBFN) based power system stabilizer (PSS) is presented in this paper. The proposed FBFN-based PSS provides a natural framework for combining numerical and linguistic information in a uniform fashion. The proposed FBFN is trained over a wide range of operating conditions in order to retune the PSS parameters in real-time, based on machine loading conditions. The orthogonal least squares (OLS) learning algorithm is developed for designing an adequate and parsimonious FBFN model. Time domain simulations of a synchronous machine equipped with the proposed stabilizer subject to major disturbances are investigated. The performance of the proposed FBFN PSS is compared with that of a conventional power system stabilizer (CPSS) to demonstrate the superiority of the proposed stabilizer. The effect of parameter changes on the proposed stabilizer performance is also examined. The results show the robustness of the proposed FBFN PSS and its capability to enhance system damping over a wide range of operating conditions.  相似文献   

3.
Results of a comparative study of the application of three different compensators, the power system stabilizer (PSS), the static VAR compensator (SVC), and the rectifier current regulator (RCR), for the damping enhancement of generator oscillations in a power system are presented. In order to enhance the dampings of both the mechanical mode and the exciter mode in the system, a unified approach based on modal control theory is proposed for the design of the PSS, the SVC, and the RCR. A proportional-integral-derivative (PID) type controller using generator speed deviation as a modulated signal to generate the desired damping is proposed, and it is shown that both affected system modes can be exactly located at the prespecified positions on the complex plane by the proposed damping schemes. To demonstrate the effectiveness of the proposed PID controllers and their relative merits, a frequency-domain study based on eigenvalue analysis under different operating conditions and a time-domain study based on nonlinear model simulations under disturbance conditions are performed  相似文献   

4.
In this paper, an adaptive fuzzy power system stabilizer is developed based on robust synergetic control theory and terminal attractor techniques. The main contribution consists in making the dynamic system insensitive to parameters variation. This aim is achieved using a new synergetic controller design such that power system states start, evolve and remain on a designer chosen attractor toward the equilibrium point therefore avoiding transient mode. Rendering the design more robust, fuzzy logic systems are used to approximate the unknown power system dynamic functions without calling upon usual model linearization and simplifications. Based on an indirect adaptive scheme and Lyapunov theory, adaptation laws are developed to make the controller handle parameters variations due to the different operating conditions occurring on the power system and to guarantee stability. The performance of the proposed stabilizer is evaluated for a single machine infinite bus system and for a multi machine power system under different type of disturbances. Simulation results show the effectiveness and robustness of the proposed stabilizer in damping power system oscillations under various disturbances and better overall performance than classical PSS and some other types of power stabilizers.  相似文献   

5.
为克服现代大规模电力系统分析的“维数灾”及电力电子元件难以用精确数学模型分析的问题,引入多信号到基于奇异值–总体最小二乘法的改进Prony算法中。在小波变换消噪和滤波的基础上,建立多信号的样本函数矩阵来提高辨识的准确性,在多信号的样本函数矩阵的基础上辨识振荡特征,并将计算结果应用到传递函数辨识中,然后依据辨识传递函数采用极点配置法进行电力系统稳定器(power system stabilizer,PSS)设计。IEEE 4机11节点系统验证了多信号改进算法对于信号特征和传递函数辨识结果的正确性和全面性,PSS加入实际仿真系统的效果说明了利用改进算法设计出的PSS效果优于利用传统线性化数学模型设计的PSS。  相似文献   

6.
The paper presents an adaptive fuzzy logic power system stabilizer (PSS) design for damping oscillatory electromechanical modes of oscillations and enhancing the first-swing synchronous stability margins. The novel design utilizes a multivariable damping signal vector consisting of machine speed deviation, rate of speed deviation, and voltage deviation. The design is based on a multizonal PID structure and fuzzy logic variable-gain scheduling to optimize the damping action. The fuzzy logic PSS is proposed for use in parallel with the conventional analog type PSS with added simple switching criteria. The two PSS blocks can be allowed independent, sequential, and/or combined operation with different effective stabilizing weighting. The paper investigates an individual conventional PSS, a rule based fuzzy PSS, and hybrid operation. The parallel operation of a conventional PSS and a fuzzy logic one provides optimal sharing of the damping action under small- as well as large-scale generation-load mismatch or variations in external network topology due to fault or switching conditions.  相似文献   

7.
A pole placement technique for power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) based stabilizer using simulated annealing (SA) algorithm is presented in this paper. The proposed approach employs SA optimization technique to PSS (SAPSS) and TCSC-based stabilizer (SACSC) design. The design problem is formulated as an optimization problem where SA is applied to search for the optimal setting of the proposed SAPSS and SACSC parameters. A pole placement-based objective function to shift the dominant eigenvalues to the left in the s-plane is considered. The proposed SAPSS and SACSC have been examined on a weakly connected power system with different disturbances, loading conditions, and system parameter variations. Eigenvalue analysis and nonlinear simulation results show the effectiveness and the robustness of the proposed stabilizers and their ability to provide efficient damping of low frequency oscillations. In addition, the performance of the proposed stabilizers outperforms that of the conventional power system stabilizer (CPSS). It is also observed that the proposed SACSC improves greatly the voltage profile of the system under severe disturbances.  相似文献   

8.
A new procedure for the design of decentralized power system stabilizers (PSS) in multimachine power systems (MMPS) is presented in this paper. In the proposed approach, the generators most effective for stabilizer applications are first identified using participation factors and mode controllability matrix. The method determines the parameters of stabilizers by assigning mechanical modes at desired locations. The algorithm uses transfer function matrix between inputs and outputs, to assign the mechanical modes.  相似文献   

9.
A fuzzy basis function network (FBFN) based power system stabilizer (PSS) is presented in this paper to improve power system dynamic stability. The proposed FBFN based PSS provides a natural framework for combining numerical and linguistic information in a uniform fashion. The proposed FBFN is trained over a wide range of operating conditions in order to re-tune the PSS parameters in real-time based on machine loading conditions. The orthogonal least squares (OLS) learning algorithm is developed for designing an adequate and parsimonious FBFN model. Time domain simulations of a single machine infinite bus system and a multimachine power system subject to major disturbances are investigated. The performance of the proposed FBFN PSS is compared with that of conventional (CPSS). The results show the capability of the proposed FBFN PSS to enhance the system damping of local modes of oscillations over a wide range of operating conditions. The decentralized nature of the proposed FBFN PSS makes it easy to install and tune  相似文献   

10.
双馈风电机组附加阻尼控制器与同步发电机PSS协调设计   总被引:2,自引:0,他引:2  
针对大规模双馈风电机组接入电力系统后的区间低频振荡问题,提出了一种协调双馈风电机组附加阻尼控制器和同步发电机电力系统稳定器(PSS)的设计策略。首先,考虑风电机组的机械部分、电气部分和控制结构,建立了双馈风电机组的机电暂态模型和附加阻尼控制器模型。在闭环电力系统线性化模型的基础上,提出利用动态指标值的优化模型来协调整定双馈风电机组附加阻尼控制器和同步发电机PSS的控制参数,并使用粒子群算法求解优化模型的全局最优解。最后,通过2个标准仿真系统算例,对比传统的阻尼控制器设计策略,验证了所设计策略的有效性和实用性。  相似文献   

11.
The authors present a decentralized model reference adaptive control (DMRAC) scheme for the design of power system stabilizers (PSS) and a means for coordinating the generating unit excitation and governor control loops. In the excitation and governor control loops. In the proposed scheme, the state variables of the generating unit (GU) are to track those of an explicitly specified reference system which is designed to have desirable performance characteristics. The adaptive control law for coordinating the exciter-governor stabilizer signals is derived from a Lyapunov energy function, and thus assures system stability. Decentralized regulation and tracking tests on simulated one-machine infinite bus system show significant improvement in system performance  相似文献   

12.
Excitation supplementary control is used in power systems to enhance the damping of low frequency oscillations due to the mechanical modes of the generators. Traditionally, frequency deviation is fed back to the exciter through phase lag-lead compensators to form the supplementary control. This supplementary control is known as power system stabilizer (PSS). An optimal power system stabilizer (OPSS) based on linear quadratic regulator design and utilizing the conventional phase lag-lead structure of PSS is presented in this paper. Furthermore, a suboptimal power system stabilizer (SOPSS) is proposed by neglecting the coupling gains between machines and feeding back only the speed deviation and the PSS states. The OPSS and SOPSS are compared with the conventional phase lag-lead power system stabilizer and simulation results of several power system examples are presented.  相似文献   

13.
电力系统稳定器(PSS)是励磁系统的一种附加功能,它抽取与低频振荡有关的信号并对其加以处理,产生的附加信号跌加到励磁调节器中,使发电机产生阻尼低频振荡的附加转矩,用于提商电力系统的阻尼。将电山系统稳定器(PSS)投入运行是解决电网低频振荡问题、提高电同动态稳定性诸多措施中最简单、经济前方法。对山东电网电力系统稳定器(PSS)现场试验中出现的跳机、PSS模型不理想、阶跃试验发电机有功功率波动不明显等问题进行分析,提出试验前后屏蔽白噪声输入通道、在励磁调节器配置通用的PSS模型、优化励磁调节器PID参数等改进措施,以期对电力系统稳定器(PSS)的使用和现场试验有所帮助。  相似文献   

14.
A generalized method for the design of excitation control or a power system stabilizer (PSS) based on complex frequency is described. The method selects PSS parameters such that exact assignment of eigenvalues associated with the mechanical modes of oscillation to desired locations is achieved. Numerical examples are used to illustrate the concepts of the proposed new technique.  相似文献   

15.
Electromechanical oscillations of small magnitude and low frequency exist in the interconnected power system and often persist for long periods of time. Power system stabilizers (PSSs) are traditionally used to provide damping torque for the synchronous generators to suppress the oscillations by generating supplementary control signals for the generator excitation system. Numerous techniques have previously been proposed to design PSSs but many of them are synthesized based on a linearized model. This paper presents a nonlinear power system stabilizer based on synergetic control theory. Synergetic synthesis of the PSS is based fully on a simplified nonlinear model of the power system. The dynamic characteristics of the proposed PSS are studied in a typical single-machine infinite-bus power system and compared with the cases with a conventional PSS and without a PSS. Simulation results show the proposed PSS is robust for such nonlinear dynamic system and achieves better performance than the conventional PSS in damping oscillations.  相似文献   

16.
This paper addresses a new robust control strategy to synthesis of robust proportional-integral-derivative (PID) based power system stabilisers (PSS). The PID based PSS design problem is reduced to find an optimal gain vector via an H∞ static output feedback control (H∞-SOF) technique, and the solution is easily carried out using a developed iterative linear matrix inequalities algorithm. To illustrate the developed approach, a real-time experiment has been performed for a longitudinal four-machine infinite-bus system using the Analog Power System Simulator at the Research Laboratory of the Kyushu Electric Power Company. The results of the proposed control strategy are compared with full-order H∞ and conventional PSS designs. The robust PSS is shown to maintain the robust performance and minimise the effect of disturbances properly.  相似文献   

17.
The power system stabilizer (PSS) is a low‐cost method of stabilizing the intertie and local oscillations of a power network. The PSS parameters are usually adjusted based on the one‐machine infinite‐bus system model. In contrast, a real power system consists of multimachine systems. Thus, coordinated setting of the PSS parameters, with the real characteristics of the power system network taken into consideration, is expected to improve stability. For this purpose, the modal performance measure (MPM) method is used to adjust the PSS parameters. The power network mathematical model that is required for this calculation is given by the system identification method. Utilizing the MPM method characteristics, restrictions such as the damping coefficient and maximum gain, which constitute practical design specifications used for conventional controllers, are naturally introduced. Furthermore, radial basis function (RBF) frequency weighing is introduced in order to adjust the frequency responses. The expected favorable results were found in large‐scale power system simulations.  相似文献   

18.
蔺红  晁勤 《电网技术》2009,33(9):40-43
采用传统频域方法进行电力系统稳定器(power system stabilizer,PSS)参数设计时只考虑本机组的运行,忽视了电网的整体运行情况。为此,文章基于降阶选择模式分析法对PSS参数进行优化,形成了系统的降阶状态方程。通过计算状态方程特征根与状态变量的相关性及灵敏度,确定了PSS的配置点。文中的方法不必计算系统全部特征根,所需的计算时间较少。针对新疆实际电网,文章还进行了PSS参数设计,确定了PSS的安装地点及安装机组,仿真结果表明文中的PSS抑制振荡的效果良好,验证了文中方法的正确性和有效性。  相似文献   

19.
This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters (such as saturation limits of the PSS), two methods are applied for the optimal tuning of all parameters. One is to use the optimization technique based on the Hessian matrix estimated by the feedforward neural network, which identifies the first-order derivatives obtained by the trajectory sensitivities, for the nonlinear parameters. Moreover, the other is to use the eigenvalue analysis for the linear parameters. The performances of parameters optimized by the proposed method are evaluated by the case studies based on time-domain simulation and real-time hardware implementation.  相似文献   

20.
基于微粒群优化算法的最优电力系统稳定器设计   总被引:7,自引:0,他引:7  
传统电力系统稳定器的性能受其参数影响很大,为提高电力系统机电暂态模型的阻尼,文中提出了一种优化电力系统稳定器参数的新方法。该方法以两个特征值基目标函数为基础,采用改进的微粒群优化技术对电力系统稳定器进行参数优化。特征值分析和非线性仿真结果表明,经过参数优化的电力系统稳定器能有效抑制本地和区域间振荡,提高系统的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号