共查询到20条相似文献,搜索用时 15 毫秒
1.
The rehabilitation of extirpated lake trout (Salvelinus namaycush) in the Great Lakes and Lake Champlain has been hindered by various biological and physiological impediments. Efforts to restore a lake trout fishery to Lake Champlain include hatchery stocking and sea lamprey control. Despite these management actions, there is little evidence of recruitment of naturally-produced fish in annual fall assessments. Spawning occurs at multiple sites lake-wide in Lake Champlain, with extremely high egg and fry densities, yet sampling for juvenile lake trout has only yielded fin-clipped fish. To investigate this recruitment bottleneck, we assessed predation pressure by epi-benthic fish on emergent fry on two spawning reefs and the subsequent survival and dispersal of fry in potential nursery areas. Epi-benthic predators were sampled with 2-h gillnet sets at two small, shallow sites in Lake Champlain throughout the 24-h cycle, with an emphasis on dusk and dawn hours. In total, we documented seven different species that had consumed fry, with consumption rates from 1 to 17 fry per stomach. Rock bass and yellow perch dominated the near-shore fish community and were the most common fry predators. Predator presence and consumption of fry was highest between 19:00 and 07:00. Predators only consumed fry when fry relative abundance was above a threshold of 1 fry trap− 1 day− 1. We used an otter trawl to sample for post-emergent fry adjacent to the reef, but did not capture any age-0 lake trout. Due to the observed predation pressure by multiple littoral, species on shallow spawning reefs, lake trout restoration may be more successful at deep, offshore sites. 相似文献
2.
Jory L. Jonas Kyle J. Broadway Laura Mathews Tracy L. Galarowicz Kevin L. Pangle Andrew M. Muir Kim T. Scribner 《Journal of Great Lakes research》2017,43(1):155-162
Managers have long embraced the need to maintain diversity as a requisite condition for population and community sustainability. In the case of Great Lakes lake trout, diversity has been severely compromised. The identification of new gamete sources may be beneficial to lake trout reintroduction efforts, particularly in situations where native stocks have been completely extirpated such as in Lake Michigan. Lake trout from Elk Lake, Michigan, are genetically distinct from domestic hatchery strains and historical forms of lake trout from Lake Michigan. Importantly, Elk Lake fish were genetically distinct from Marquette strain lake trout which were previously stocked into Elk Lake. Elk Lake fish were most similar to Lake Michigan basin-derived Lewis Lake (LLW) and Green Lake (GLW) hatchery strains and to historical Lake Michigan populations from the Charlevoix, Michigan area. While all individuals exhibited characteristics of lean form lake trout, the body shape of lake trout from Elk Lake, stocked lean fish from Lake Michigan and Lake Superior wild lean strains from near Isle Royale differed. Elk Lake fish were more fusiform, elongate, and streamlined with a narrower caudal peduncle compared to hatchery lean strains and wild lean forms from the Isle Royale region of Lake Superior. The lake trout population in Elk Lake is a remnant of a now extirpated native Lake Michigan population that was established either by natural colonization or stocking from historical Lake Michigan populations. Elk Lake lake trout is as genetically diverse as other strains used in Great Lakes reintroduction efforts and likely represent a viable gamete source representing genetic diversity lost from Lake Michigan. 相似文献
3.
Nicholas E. Jones Michael Parna Sarah Parna Steve Chong 《Journal of Great Lakes research》2018,44(5):1117-1122
Lake trout spawn primarily in lakes, and the few river-spawning populations that were known in Lake Superior were believed to be extirpated. We confirmed spawning by lake trout in the Dog River, Ontario, during 2013–2016 by the collection of and genetic identification of eggs, and we describe spawning meso- and microhabitat use by spawning fish. Between 2013 and 2016, a total of 277 lake trout eggs were collected from 39 of 137 sampling locations in the river. The majority of eggs (220) were collected at the transition between the estuary and the river channel crossing the beach. Lake trout eggs were most often located near the downstream end of pools in areas characterized by rapid changes in depth or slope, coarse substrates, and increased water velocities, where interstitial flows may occur. Depths in wadeable areas where eggs were found averaged 0.9?m (range: 0.4 to 1.3?m) and substrate sizes consisted of large gravel, cobble, and boulder; comparable to spawning characteristics noted in lakes. Water velocities averaged 0.66?m·s?1 (range: 0.33 to 1.7?m3·s?1) at mid-depth. This information on spawning habitat could be used to help locate other remnant river-spawning populations and to restore river-spawning lake trout and their habitat in rivers that previously supported lake trout in Lake Superior. The Dog River population offers a unique opportunity to understand the ecology of a river spawning lake trout population. 相似文献
4.
Edward F. Roseman Wendylee StottTimothy P. O'Brien Stephen C. RileyJeffery S. Schaeffer 《Journal of Great Lakes research》2009
Restoration of lake trout Salvelinus namaycush stocks in Lake Huron is a fish community objective developed to promote sustainable fish communities in the lake. Between 1985 and 2004, 12.65 million lake trout were stocked into Lake Huron representing eight different genetic strains. Collections of bona fide wild fish in USGS surveys have increased in recent years and this study examined the ancestry and diet of fish collected between 2004 and 2006 to explore the ecological role they occupy in Lake Huron. Analysis of microsatellite DNA revealed that both pure strain and inter-strain hybrids were observed, and the majority of fish were classified as Seneca Lake strain or Seneca Lake hybrids. Diets of 50 wild age-0 lake trout were examined. Mysis, chironomids, and zooplankton were common prey items of wild age-0 lake trout. These results indicate that stocked fish are successfully reproducing in Lake Huron indicating a level of restoration success. However, continued changes to the benthic macroinvertebrate community, particularly declines of Mysis, may limit growth and survival of wild fish and hinder restoration efforts. 相似文献
5.
Christopher T. Boehler Jeffrey G. Miner John R. Farver Brian J. Fryer 《Journal of Great Lakes research》2012
Straying of salmonids in Lake Erie is not well understood despite the economic importance of these recreational fisheries, which are sustained by stocking approximately 2 million steelhead trout (Oncorhynchus mykiss) yearlings annually. The occurrence of straying in hatchery-reared salmonid populations can be influenced by stocking strategies, such as within-stream stocking location. Conneaut Creek provides a unique opportunity to evaluate the extent of release-site fidelity of adult steelhead trout from Lake Erie, because it is equally stocked by Ohio and Pennsylvania at different distances from the stream mouth. Adult steelhead trout were collected from two Conneaut Creek sites, Conneaut Ohio (2 km from Lake Erie) and Albion Pennsylvania (61 km from Lake Erie), in spring and fall of 2009. Elemental signatures of yearling otoliths measured by laser-ablation-inductively-coupled-plasma-mass-spectrometry were used to identify hatchery stocks. The state-specific hatchery stocks were identified with high confidence using discriminant analysis (Sr and Ba concentrations in nine otolith regions; Ohio 100.0%, Michigan 86.1%, New York 92.4%, and Pennsylvania 93.2% using jackknifed mean correct assignment). Adult steelhead trout (N = 174) collected in spring and fall at Conneaut Ohio included both Ohio and Pennsylvania-stocked fish, but no Ohio-stocked steelhead trout were collected at the Pennsylvania site in either season. Of the classified adult steelhead trout, 13.8% were identified as strays from other states (New York and Michigan). These results confirm strong release-site fidelity between Ohio and Pennsylvania stocked steelhead trout and provides fishery managers with sound scientific data to refine their stocking practices. 相似文献
6.
Stephen C. Riley Thomas R. Binder Nigel J. Wattrus Matthew D. Faust John Janssen John Menzies J. Ellen Marsden Mark P. Ebener Charles R. Bronte Ji X. He Taaja R. Tucker Michael J. Hansen Henry T. Thompson Andrew M. Muir Charles C. Krueger 《Journal of Great Lakes research》2014
Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes. 相似文献
7.
John D. Fitzsimons Bill Williston Lenore Vandenbyllaardt Abdel El-Shaarawi Scott B. Brown 《Journal of Great Lakes research》2012
To more fully understand the secondary effects of thiamine deficiency on embryo development of lake trout Salvelinus namaycush, we used an immersion protocol to administer graded doses of the thiamine antagonist oxythiamine (OXY) (e.g., 0, 12.5, 25, 50, 100, 200, and 400 mg/L). OXY was administered to eggs of six families at water hardening (fertilization) with the intent that early mortality syndrome (EMS), an acute thiamine deficiency mortality, would only occur at the highest OXY concentration. We assessed the effect of OXY and family on the occurrence of EMS and other embryonic mortality, and alevin growth dynamics up until 2 weeks post emergence. EMS reached only 4% at the highest OXY concentration (400 mg/L) where there was a significant decline in alevin length and yolkless alevin dry weight but not the dry weight of alevins whose yolk-sac was still attached. The dry weight of the yolk-sac as a percentage of total alevin dry weight was lower than controls at low concentrations of OXY (12.5, 25 mg/L), but higher than controls at the highest concentration of OXY (400 mg/L). OXY appeared to exert its effect on growth through reduced yolk-sac utilization although the mechanism(s) involved is unknown. Reduced growth and yolk-sac utilization of alevins resulting from thiamine deficiency may contribute to mortality through decreased ability of affected alevins to secure food and avoid predation. We conclude that even for very low EMS, alevin growth effects resulting from thiamine deficiency may pose a significant impediment to lake trout reproduction. 相似文献
8.
Peter Pantazopoulos Jennifer M. Sawyer Mary E. Turyk Miriam Diamond Satyendra P. Bhavsar Donna Mergler Susan Schantz Nimal Ratnayake David O. Carpenter 《Journal of Great Lakes research》2013
Fish are an excellent source of lean protein and omega-3 polyunsaturated fatty acids (PUFAs) but there is inadequate information on the levels of PUFAs in freshwater fish and specifically Great Lakes fish. Knowledge of PUFAs is necessary to make informed decisions regarding the balance between the benefits of fish consumption due to these factors versus risks of adverse health effects associated with elevated levels of contaminants known to be present in some Great Lakes fish and linked to increased risk of cancer and adverse neurological effects to both infants and adults. Our goal was to determine the lipid profiles in two species of Great Lakes fish, lake trout and whitefish. Total fat and the percentage of total and omega-3 PUFAs were with one exception significantly higher in lake trout than whitefish. Average concentrations of EPA + DHA were 11.2 and 9.7 g/100 g lipid in lake trout and whitefish, respectively. The concentrations of EPA + DHA in fatty marine fish (22.7, 23.9 and 30.2 g/100 g lipid, respectively) are about double those found in Great Lakes lake trout and whitefish. Nevertheless a 100 g serving of Great Lakes lake trout provides more than 500 mg of EPA + DHA, which is the daily intake level recommended by the American Dietetics Association for the prevention of coronary heart disease. 相似文献
9.
Beth V. Holbrook Thomas R. HrabikDonn K. Branstrator Allen F. Mensinger 《Journal of Great Lakes research》2013
Reaction distances under various light intensities (0-19 uE/m2/s), angles of attack, swimming speeds, and percentage of overall foraging success were measured. Extensive efforts have been invested in restoring lean lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes, but successful natural recruitment of lake trout continues to be rare outside of Lake Superior and parts of Lake Huron. There is evidence of high mortality during the first several months after eggs hatch in the spring, but little is known about the foraging mechanisms of this age-0 life stage. We developed a foraging model for age-0 lake trout (S. namaycush) in response to amphipods (Hyalella azteca) and mysids (Mysis diluviana) by simulating underwater environmental conditions in the Great Lakes using a temperature-controlled chamber and spectrally matched lighting. Reaction distances under various light intensities (0–19 uE/m2/s), angles of attack, swimming speeds, and percentage of overall foraging success were measured. Intake rates under different light intensities and prey densities were also measured. Age-0 lake trout were non-responsive in the dark, but were equally responsive under all light levels tested. Age-0 lake trout also demonstrated a longer reaction distance in response to moving prey, particularly mysids, which had an escape response that reduced overall foraging success. We determined that prey intake rate (numeric or biomass) could be modeled most accurately as a function of prey density using a Michaelis–Menton equation and that even under low mysid densities (3 individuals/m2), age-0 lake trout could quickly satisfy their energetic demands in a benthic setting. 相似文献
10.
Spatial and seasonal comparisons of growth of wild and stocked juvenile lake trout in Lake Champlain
After 42 years of stocking in Lake Champlain, recruitment of wild juvenile lake trout (Salvelinus namaycush) was first observed in 2015. Abundance of wild lake trout juveniles was spatially heterogeneous. Recruitment of wild fish to age-1 and subsequent survival are likely related to growth including overwinter growth. We hypothesized that growth potential or growth-related mortality of wild and stocked fish may explain spatial differences in abundance. We collected juvenile (age-0 to 3) lake trout by bottom trawling in the central, north, and south Main Lake every 2–4 weeks during the ice-free season, 2015–2018. The percentage of wild juveniles increased from 27.8% of the total catch in 2015 to 65.7% in 2018. Rates of growth in length and change in condition were compared in wild versus stocked lake trout, among sampling areas, and between seasons (sampling season relative to winter). Wild juveniles grew equally or faster in length than stocked juveniles at the same age, but changed more slowly in condition. There was a higher percentage of wild juveniles in the central sampling area than the north and south, but no differences in growth among sampling areas. Wild and stocked fish grew in length over winter, but most cohorts (6 of 7) maintained or increased condition. Results indicate high growth potential of wild juvenile lake trout and progress toward population restoration. 相似文献
11.
Shawn P. Sitar Helen M. Morales Melissa T. Mata Brandon B. Bastar Dawn M. Dupras Gregory D. Kleaver Kevin D. Rathbun 《Journal of Great Lakes research》2008,34(2):276-286
The siscowet Salvelinus namaycush is a deepwater morphotype of lake trout in Lake Superior. As part of a standardized lake-wide survey in 2006 to assess siscowet populations, bottom-set, multi-mesh gill nets were fished at 36.6 m depth intervals from near shore areas to the deepest waters in south-central Lake Superior. Siscowet length distributions, diet compositions, and sea lamprey wounding rates were compared for three depth zones: shallow (< 200 m), deep (200–394 m), and deepest (395–399 m). There were 39 siscowets collected in proximity to Lake Superior's greatest recorded depth of 405 m. To our knowledge, this is the greatest depth that fish have been collected in the Great Lakes. Higher proportions of siscowets ≤ 500 mm were caught in the shallow zone compared to deeper zones. Deepwater sculpins were the dominant prey for small siscowets (< 600 mm) across all depth zones. The diet of large siscowets (≥ 600 mm) among all depth zones comprised mostly of coregonines and burbot Lota lota. Terrestrial insects were observed in the diet of siscowets in all depth zones, indicating migration to the surface. Type A sea lamprey wounding rates were higher for large (≥ 600 mm) than small siscowets among all depth zones. The highest wounding rate was observed on large siscowets in the deep zone. Recent work indicates that siscowets are the most abundant lake trout form and this research indicates that siscowets use the maximum depths of Lake Superior. 相似文献
12.
There are four documented morphotypes of lake trout (Salvelinus namaycush) in Lake Superior, with the two dominant forms being the shallow water lean and the deep water siscowet. These morphotypes are differentiated externally by morphometrics and meristics. Pyloric caeca counts have been used to distinguish closely related fish species including the Salvelinus genus. From samples collected in 2009, 2011–2013, and 2017, we counted and measured pyloric caeca from 116 lean and 119 siscowet lake trout from southern Lake Superior. For a subset of 22 leans and 19 siscowets between 575 and 625 mm, we measured individual pyloric caecum basal diameter, length, and estimated individual caecum and total caeca surface areas. Siscowets had significantly fewer and thicker pyloric caeca than leans, but caecum length did not differ between the morphotypes. Mean pyloric caeca count for siscowets and leans was 131 and 153, respectively. Mean individual caecum surface area was 31% higher in siscowets than in leans. When adjusted for mean total number of pyloric caeca, total caecum surface area for siscowets was 12% greater than leans. We postulate that greater pyloric caecum surface area in siscowets may be an adaption for greater lipid uptake because they have substantially higher lipid content than leans. Based on our findings, pyloric caeca counts can be used in addition to other meristic and morphometric characteristics to help distinguish lean and siscowet lake trout. 相似文献
13.
Lake trout (Salvelinus namaycush) reared in hatcheries are exposed to an environment and feeding regime that is different from wild lake trout, and are stocked at substantially larger sizes with higher lipid reserves. In addition to differences in diet and growth, this early experience may alter habitat use compared to the wild cohort. We used seasonal data on the depth and temperature distribution of wild and stocked juvenile lake trout to test for differences in habitat use and inform sampling strategies to evaluate annual recruitment. Bottom trawling was conducted from 2015 to 2019 in the central basin of Lake Champlain every two to four weeks during the ice-free season. Differences in distribution of wild and stocked lake trout were most pronounced during thermal stratification, when wild juveniles were more abundant than stocked juveniles at shallower depths and warmer temperatures and stocked juveniles were more abundant at deeper depths and colder temperatures. Temperature preferences may be a consequence of different early rearing environments; wild lake trout are acclimated to lake temperatures and forage, whereas stocked fish entered the lake with high lipid content and little foraging experience. Unbiased assessment of the proportion of wild lake trout and growth and survival of the entire juvenile lake trout population using bottom trawl sampling should either take place in the pre- and post-stratification seasons when wild and stocked fish are at the same depths, or include the full range of depths and temperatures that wild and stocked fish occupy during the stratified period. 相似文献
14.
Jared J. Homola Alexander Samborski Jeannette Kanefsky Kim T. Scribner 《Journal of Great Lakes research》2019,45(5):998-1002
The Lake Michigan brown trout (Salmo trutta) fishery is sustained by the stocking of five hatchery strains by four state natural resource agencies. In the absence of exhaustive marking programs, strain-specific measures of stocking success are lacking for brown trout in Lake Michigan. We used microsatellite-based genetic assignment testing and genetic stock identification (GSI) to determine the strain of 122 angler-caught brown trout from four northeastern Lake Michigan ports. We compared strain composition estimates for sportfishing harvest to expected proportions of each brown trout strain in Lake Michigan at the time of harvest using stocking records corrected for age-specific mortality rates. Reassignment rates of individuals from baseline strains averaged 92.1% (range: 84.1–98.0%). Assignment testing and GSI analyses consistently found Wild Rose strain brown trout represented approximately 89% of the northeastern Lake Michigan sportfishing harvest, while only comprising 43.8% of the expected stock. Of the Michigan angler harvest of Wild Rose strain brown trout, approximately half were estimated to have originated from Wisconsin hatcheries, demonstrating a propensity for lake-wide movements. Continued assessments will improve understanding of strain relative contributions to angler harvests that can direct future stocking efforts. 相似文献
15.
Yolanda E. Morbey David M. Anderson Bryan A. Henderson 《Journal of Great Lakes research》2008,34(2):287-300
Our objective was to evaluate the status of lake trout Salvelinus namaycush rehabilitation in South Bay, Lake Huron. Standardized surveys were conducted to quantify natural recruitment, annual mortality, and the contribution of wild-versus hatchery-origin lake trout. Some indicators suggest a high level of natural recruitment. The spawning population was comprised of multiple ages, and the mean age of spawners (8.4 years for females, 7.9 years for males) was at least 1 year older than the age at 50% maturity (5.8 years). Estimated annual total mortality rates (0.20–0.25) and sea-lamprey induced mortality rates (0.02) were less than maximum allowable values. The proportion of wild-origin fish captured was high among spawners but varied among sampling programs (42% in fall trap nets, 70% in fall gill nets, and 88% in summer gill nets). A strong year class (1997) could be tracked from 2001 to 2005. Few fish were captured from early (< 1996) or later (1999–2002) year classes. Possible explanations for low natural recruitment during these later years include declining spawning habitat quality caused by low water levels and/or invasion of non-native mussels (Dreissena spp.) and/or direct or indirect effects of alewife (Alosa pseudoharengus). 相似文献
16.
J. Ellen Marsden Carrie L. Kozel Brian D. Chipman 《Journal of Great Lakes research》2018,44(1):166-173
Lake trout were extirpated from Lake Champlain by 1900, and are currently the focus of intensive efforts to restore a self-sustaining population. Stocking of yearling lake trout since 1972 has re-established adult populations, spawning occurs at multiple sites lake-wide, and fry production at several sites is very high. However, little to no recruitment past age-0 has occurred, as evidenced by the absence of adults without hatchery fin clips in fall assessments; no regular sampling for juveniles is conducted. We began focused sampling for juvenile lake trout in fall, 2015, in the Main Lake using bottom trawling, and expanded sampling to sites in the north and south of the lake in 2016. In 2015 we collected 303 lake trout < 350 mm total length, of which 23.8% were unclipped. Based on non-overlapping length modes, these wild fish comprised at least three age classes (young-of-year, age-1, and age-2). In 2016, we collected 1215 lake trout < 350 mm, including a fourth wild year class (2016 young-of-year). Forty-nine percent of juvenile lake trout from the Main Lake were unclipped; however, only 20% from the north lake and 9% from the south lake were unclipped. The absence of older unclipped fish indicates that recruitment of wild fish began recently. We discuss several hypotheses to explain this sudden, substantial recruitment success, and factors that may be affecting lake trout restoration in Lake Champlain and the Great Lakes. 相似文献
17.
Grant Woodard Travis O. Brenden William P. Mattes 《Journal of Great Lakes research》2021,47(2):463-474
Over the last two decades, declines in lake whitefish (Coregonus clupeaformis) recruitment and growth in many areas of the Laurentian Great Lakes have raised concerns about the status of this important species. Although Lake Superior populations have been less affected than those in other Great Lakes, these populations still face multiple threats. We characterized lake whitefish diets collected off the Keweenaw Peninsula between 2015 and 2017 and compared results to previous Lake Superior studies. We additionally estimated length-weight relationships to determine whether lake whitefish body condition (i.e., expected weight-at-length) had changed since the 1980s. Diet diversity was low, although individual specialization was moderate to high. Fish transitioned from consuming Diporeia in the spring to Mysis and fish eggs during fall and winter; sphaeriids composed 20–30% of diets across all seasons. Compared to findings for other Lake Superior regions, lake whitefish diets comprised lower percentages of high energy items (e.g., Diporeia, Mysis) and higher percentages of low energy items (e.g., sphaeriids). Expected weights in the 2000s and 2010s were lower in the 400- and 500-mm length groups but similar in larger lengths groups compared to the 1980s; condition was highest across all lengths in the 1990s. The observed decline in condition since the 1990s in the 400- and 500-mm length groups, in combination with possibly greater consumption of less energetically profitable items, suggests that lake whitefish <600 mm or preferred prey resources in this lake region may be experiencing stressors leading to condition declines, although what these stressors are remain unknown. 相似文献
18.
Brook trout (Salvelinus fontinalis) are found throughout Lake Superior, Lake Nipigon, and their tributaries. Lacustrine and adfluvial life history variants were historically popular with anglers and were called coasters; coaster brook trout populations are now severely reduced and are of conservation concern. Coasters were known to grow larger and mature later than their stream resident counterparts. This study compared movement patterns, age, size, condition, and relative weight of wild coaster and resident brook trout from the Hurricane River, Pictured Rocks National Lakeshore, Michigan. Wild brook trout ≥ 100 mm from the Hurricane River downstream from Hurricane Falls were tagged with passive integrated transponder tags and monitored for stream-lake movement behavior from May 2003 to November 2007. During 2006 and 2007, brook trout were scale sampled and aged to construct a regression that was then used to calculate the age of all brook trout tagged from 2003 to 2007. Most brook trout movement took place in the fall with October the peak month of emigration with a secondary peak in late spring/early summer and some activity nearly year round. There were no differences found in age structure, size or condition between coasters and residents while in the stream. Our data suggest that a priori growth differences are not determining the expression of coaster outmigration and that stream-lake movements made by coasters, likely driven by habitat requirements, may be highly flexible and facultative. 相似文献
19.
Eric K. Moody Brian C. Weidel Tyler D. Ahrenstorff William P. Mattes James F. Kitchell 《Journal of Great Lakes research》2011,37(2):343-348
Differences in the preferred thermal habitat of Lake Superior lake trout morphotypes create alternative growth scenarios for parasitic sea lamprey (Petromyzon marinus) attached to lake trout hosts. Siscowet lake trout (Salvelinus namaycush) inhabit deep, consistently cold water (4-6 °C) and are more abundant than lean lake trout (Salvelinus namaycush) which occupy temperatures between 8 and 12 °C during summer thermal stratification. Using bioenergetics models we contrasted the growth potential of sea lampreys attached to siscowet and lean lake trout to determine how host temperature influences the growth and ultimate size of adult sea lamprey. Sea lampreys simulated under the thermal regime of siscowets are capable of reaching sizes within the range of adult sea lamprey sizes observed in Lake Superior tributaries. High lamprey wounding rates on siscowets suggest siscowets are important lamprey hosts. In addition, siscowets have higher survival rates from lamprey attacks than those observed for lean lake trout which raises the prospect that siscowets serve as a buffer to predation on more commercially desirable hosts such as lean lake trout, and could serve to subsidize lamprey growth. 相似文献
20.
Natal philopatry in lake sturgeon (Acipenser fulvescens) has been hypothesized to be an important factor that has lead to genetically distinct Great Lakes populations. Due to declining abundance, population extirpation, and restricted distribution, hatchery supplementation is being used to augment natural recruitment and to reestablish populations. If hatchery-reared lake sturgeon are more likely to stray than naturally produced individuals, as documented in other well-studied species, outbreeding could potentially jeopardize beneficial site-specific phenotypic and genotypic adaptations. From 1983 to 1994, lake sturgeon propagated using eggs taken from Lake Winnebago adults (Lake Michigan basin) were released in the St. Louis River estuary in western Lake Superior. Our objective was to determine whether these introduced individuals have strayed into annual spawning runs in the Sturgeon River, Michigan. Additionally, we estimated a natural migration rate between the Sturgeon River and Bad River, Wisconsin populations. Presumed primiparous lake sturgeon sampled during Sturgeon River spawning runs from 2003 to 2008 were genotyped at 12 microsatellite loci. Genotypic baselines established for the Sturgeon River (n = 101), Bad River (n = 40), and Lake Winnebago river system (n = 73) revealed a relatively high level of genetic divergence among populations (mean FST = 0.103; mean RST = 0.124). Likelihood-based assignment tests indicated no straying of stocked Lake Winnebago strain lake sturgeon from the St. Louis River into the Sturgeon River spawning population. One presumed primiparous Sturgeon River individual likely originated from the Bad River population. Four first-generation migrants were detected in the Sturgeon River baseline, indicating an estimated 3.5% natural migration rate for the system. 相似文献