首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses a procedure for the use of fire modelling in the performance-based design environment to quantify design fires for commercial buildings. This procedure includes building surveys, medium-and full-scale experiments and computer modelling. In this study, a survey of commercial premises was conducted to determine fire loads and types of combustibles present in these buildings. Statistical data from the literature were analysed to determine the frequency of fires, ignition sources, and locations relevant to these premises. Based on the results of the survey and the statistical analyses a number of fuel packages were designed that represent fire loads and combustible materials in commercial buildings. The fuel packages were used to perform medium- and full-scale, post-flashover fire tests to collect data on heat release rates, compartment temperatures and production and concentration of toxic gases. Based on the experimental results, input data files for the computational model, Fire Dynamics Simulator (FDS), were developed to simulate the burning characteristics of the fuel packages observed in the experiments. Comparative analysis between FDS model predictions and experimental data of HRR, carbon monoxide (CO), and carbon dioxide (CO2), indicated that FDS model was able to predict the HRR, temperature profile in the burn room, and the total production of CO and CO2 for medium- and large-scale experiments as well as real size stores.  相似文献   

2.
Carleton University’s experimental atrium and tunnel facilities share a fan chamber and three large exhaust fans. Using oxygen consumption calorimetry, the Heat Release Rates (HRR) of fires in either of these facilities can be calculated. This paper focuses on the design of the instrumentation in the fan chamber, which was carried out using the Fire Dynamics Simulator (FDS) and manual velocity measurements. Due to a high amount of mixing and turbulence and a long travel distance, the temperature and gas concentration profiles are relatively uniform. However, for the same reason, the velocity profile had to be looked at very closely to find an optimum combination of bi-directional probes. The analysis indicated that acceptable HRR measurements can be obtained using an array of six thermocouples, four bi-directional velocity probes and a gas sampling grid. Results from the preliminary tests are presented. The system shows a reasonable estimate of the HRR as compared to the propane calibration burner.  相似文献   

3.
Fire suppression with water spray was investigated, focusing on cases where fuel cooling is the dominant suppression mechanism, with the aim to add a specific suppression model addressing this mechanism in Fire Dynamics Simulator (FDS), which already involves a suppression model addressing effects related to flame cooling. A series of experiments was selected, involving round pools of either 25 or 35 cm diameter and using both diesel and fuel oil, in a well-ventilated room. The fire suppression system is designed with four nozzles delivering a total flow rate of 25 l/min and injecting droplets with mean Sauter diameter 112 μm. Among the 74 tests conducted in various conditions, 12 cases with early spray activation were especially considered, as suppression was observed to require a longer time to cool the fuel surface below the ignition temperature. This was quantified with fuel surface temperature measurements and flame video recordings in particular. A model was introduced simulating the reduction of the pyrolysis rate during the water spray application, in relation to the decrease of the fuel local temperature. The numerical implementation uses the free-burn step of the fire to identify the relationship between pyrolysis rate and fuel surface temperature, assuming that the same relationship is kept during the fire suppression step. As expected, numerical simulations reproduced a sharp HRR decrease following the spray activation in all tests and the suppression was predicted in all cases where it was observed experimentally. One specific case involving a water flow rate reduced such that it is too weak to allow complete suppression was successfully simulated. Indeed, the simulation showed a reduced HRR but a fire not yet suppressed. However, most of the tests showed an under-estimated duration before fire suppression (discrepancy up to 26 s for a spray activation lasting 73 s), which demonstrates the need for model improvement. In particular the simulation of the surface temperature should require a dedicated attention. Finally, when spray activation occurred in hotter environments, probably requiring a combination of fuel cooling and flame cooling effects, fire suppression was predicted but with an over-estimated duration. These results show the need for further modeling efforts to combine in a satisfactory manner the flame cooling model of FDS and the present suggested model for fuel cooling.  相似文献   

4.
Some modifications on Suzuki’s multi-layer zone model (MLZ) have been done to predict temperature and smoke distribution of a tunnel fires, i.e., the radiation heat loss of fire source is taken into account and a four-surface radiation heat transfer model is introduced. Like Suzuki’s model, as a special long and narrow space, the tunnel space is also divided into a number of layers in vertical direction and regions in longitudinal direction. The physical properties like temperature and species (CO, CO2, etc.) are assumed uniform in every zone like two-zone model. However, the different heat transfer model is introduced. The MLZ model prediction is compared with the experiments of USTC and CFD model (FDS). It shows good agreement between the model prediction, experiments and CFD models (FDS). And the MLZ model needs less time than CFD model.  相似文献   

5.
A ubiquitous source of uncertainty in fire modeling is specifying the proper heat release rate (HRR) for the fuel packages of interest. An inverse HRR calculation method is presented to determine an inverse HRR solution that satisfies measured temperature data. The methodology uses a predictor-corrected method and the Consolidated Model of Fire and Smoke Transport (CFAST) zone model to calculate hot gas layer (HGL) temperatures in single compartment configurations. The inverse method runs at super-real-time speeds while calculating an inverse HRR solution that reasonably matches the original HRR curve. Examples of the inverse method are demonstrated by using a multiple step HRR case, complex HRR curves, experimental temperature data with a constant HRR, and a case with an experimentally measured HRR. In principle, the methodology can be applied using any reasonably accurate fire model to invert for the HRR.  相似文献   

6.
张培红  田野  王松 《建筑节能》2011,39(10):37-39
利用数值模拟软件FDS,选取火炕与火墙联合运行模式进行模拟.分析了不同空气过量系数条件下,空气流量对火炕表面、火墙表面以及室内温度分布的影响,以及烟囱出口CO、CO2浓度的变化.结果表明适当的空气过量系数时提高室内热环境具有促进作用;以沼气为燃料的火炕烟囱排放的CO以及CO2浓度显著下降.农家住宅采用以沼气为热源的火炕...  相似文献   

7.
This study examined the combustion characteristics of wood-based panels and gypsum particle board (GPB) made from wood particles using a cone calorimeter according to the ISO 5660-1 specifications. The combustion characteristics of the wood-based panels and GPB were measured in terms of the time to ignition (TTI), heat release rate (HRR), smoke production rate (SPR) and CO yield under a fire condition. The results demonstrated variations in the burning characteristics between the wood-based panels and a significant influence of the surface materials and construction elements on the HRR and SPR. The HRR, SPR and the CO yield of GPB were significantly lower than those of the wood-based panels.  相似文献   

8.
In order to mitigate the excessive computational cost of atrium fire simulations, a novel methodology based on the use of the Fractional Factorial Design technique to obtain an experimental validated tool, in the form of a surface response model, capable to predict fire induced conditions is proposed. This methodology is supported by results from a Design of Experiments benchmark, which consists of a set of FDS simulations in the present work. Specifically, a \(2^{6-2}_{IV}\) approach has been considered and applied to a 20 m cubic atrium. Thus, six factors have been considered, namely the fire Heat Release Rate (HRR) and location, the exhaust flow rate, the exhaust location and activation time, and the inlet vents area. Furthermore, the smoke temperature at the roof and 15 m high and the smoke layer height have been considered the variables of interest. Subsequently, a multiple linear regression analysis has been performed to predict and compare the steady and non-steady temperature profiles and the smoke layer drop with six novel full-scale atrium fire tests, and also with specific adjusted FDS models. In addition, this methodology has been extended successfully to predict the non-steady behaviour of the fire tests. At the steady state, the HRR and the exhaust flow rate have been found to be the most relevant factors. The results obtained with the proposed methodology show a good fit both with the fire tests and with the adjusted FDS models, with discrepancies mostly below 14%. For non-steady conditions, a time analysis of the influence of the six factors has been carried out. Again, remarkable good agreement with the time-dependent experimental results is achieved, with average discrepancies below 12%, being the larger differences found in the prediction of local effects, such as the smoke ceiling jet, for high HRR or when the make-up air influence is significant. The results turn this methodology into a powerful and useful tool for fire safety designs.  相似文献   

9.
Four full-scale fire experiments using 4-door sedan passenger cars were carried out. The cars were ignited either at the splashguard of the right rear wheel or at the left front seat in the passenger compartment with a gasoline spill. The temperature inside the burning car and the mass loss rate were measured. The burning of the 4-door sedan was composed of three compartmental fires: the engine compartment, the passenger compartment, and the rear part inclusive of the fuel. In the experiments where ignition was initiated at the splashguard, the flame spread in the following order: to the rear part of the car, to the passenger compartment, and to the engine compartment. Breakage of the window glass markedly affected the spread of fire into the passenger compartment. The quantity of gasoline in the fuel tank also affected the speed of spread of the fire, because the gasoline ignited at an early stage of the fire. In the experiment where ignition was initiated in the passenger compartment, the fire gained force after the windshield was broken entirely. The flame spread in the following order: to the passenger compartment, to the engine compartment, and to the rear part of the car. The temperature within the passenger compartment peaked at 1000 °C. The heat release rate (HRR) curves showed several peaks depending on the burning of the three compartments. The HRR increased markedly when the fire spread to several different parts of the car at the same time. The HHR peaked at 3 MW when the passenger compartment and fuel (gasoline) burned simultaneously. The measured HRR curves were characterized by superposition of a Boltzmann curve and a Gaussian curve in order to obtain a model, which allowed us to make a more precise prediction of the fire spread probability from a burning car to nearby structures. The HRRs of burning cars were described by the sum of HRR from each compartment.  相似文献   

10.
ABSTRACT

The present paper discusses a comparative study of single- and pilot-injection strategy fuelled with diesel (i.e. Bu00) and 15% of butanol blend (i.e. Bu15). The effects of pilot injection timing (?33° bTDC to ?73° bTDC) and pilot injection fuel quantity (5–20%) with 15% of butanol blend were carried out numerically using CONVERGE CFD Code. The results show that in single-injection strategy, NOx, CO and soot emissions reduce, whereas UBHC emission increases with the addition of butanol content. In pilot-injection strategy, when the first fuel injection timing is advanced, the peak value of heat release rate (HRR) for the first injected fuel reduces, but marginally improves for the main injected fuel. Increasing the first injection fuel quantity, the HRR of the peak value for first injected fuel increases but the HRR of the peak value for second injected fuel reduces. Minimum ISFC was obtained at 10% of pilot injection fuel quantity and ?53° bTDC of pilot injection timing.  相似文献   

11.
Heat release rates of burning gasoline and wood fires in a room were studied by computational fluid dynamics (CFD). Version 5.5.3 of the software Fire Dynamics Simulator (FDS), which is the latest one available, was selected as the CFD simulation tool. Predicted results were compared with two sets of reported data from full-scale burning tests. In the two sets of experiments, the scenarios were set at gasoline pool fire and wood chipboard fire with gasoline respectively. The input heating rate of gasoline pool fire based on experimental measurements was used in the first set of experiments. Three scenarios G1, G2 and G3 with different grid systems were simulated by CFD. The grid system of scenario G2 gave more accurate prediction, which was then used to study the second set of experiments on wood chipboard with gasoline. The combustion model in FDS was used in wood chipboard fire induced by gasoline pool. The wood chipboard was allowed to burn by itself using the pyrolysis model in FDS. The effects of the boundary conditions on free openings for the same set of experiments were studied by three scenarios SOB1, SOB2 and SOB3. Boundary condition SOB2 gave more reliable prediction among the three boundary conditions. Two other scenarios on the effect of moisture content of wood were also studied. The predicted HRR curve was found to agree better with experiment in using SOB2.  相似文献   

12.
13.
This paper presents an experimental investigation on the transverse ceiling flame length and the temperature distribution of a sidewall confined tunnel fire. The experiments were conducted in a 1/6th scale model tunnel with the fire source placed against the sidewall, 0 m, 0.17 m and 0.35 m above the floor, respectively. Experiments of fire against a wall without a ceiling, 0.35 m above the floor in a large space, were also conducted as a control group. Results shows that for small heat release rate (HRR), the flame is lower than the ceiling and extends along the sidewall. With the increase of HRR and elevation of burner height, the flame gradually impinges on the ceiling and spreads out radially along it. The flame impingement condition and the flame shapes of the wall fire with and without ceiling are presented. From the viewpoint of the physical meaning of flame impinging on the ceiling, the horizontal flame length should be a function of the unburned part of the fuel at the impinging point. Based on the proportional relation between the flame volume and HRR, the effective HRR (Qef) at the ceiling is determined and the effective dimensionless HRR, Q*ef is defined to correlate the horizontal ceiling flame length. Additionally, predictive correlations of transverse ceiling temperature distribution are proposed for the continuous flame region, the intermittent flame region and the buoyant plume region under the ceiling, respectively.  相似文献   

14.
In this study, the Fire Dynamics Simulator (FDS), a computational fluid dynamics (CFD) model developed by National Institute of Standards and Technology (NIST) is used to simulate fire tests conducted at the National Research Council of Canada (CNRC). These tests were conducted in an experimental 10-storey tower to generate realistic smoke movement data. A full size FDS model of the tower was developed to predict smoke movement from fires that originate on the second floor. Three propane fire tests were modelled, and predictions of O2, CO2 concentrations and temperature on each floor are compared with the experimental data. This paper provides details of the tests, and the numerical modelling, and discusses the comparisons between the model results and the experiments. The 10-storey experimental tower was designed to simulate the centre core of high-rise buildings. It includes a compartment and corridor on each floor, a stair shaft, elevator shaft and service shafts. Three propane fire tests were conducted in 2006 and 2007 to study smoke movement through the stair shaft to the upper floors of the building. The fire was set in the compartment of the 2nd floor. Thermocouples and gas analyzers were placed on each floor to measure temperature and O2, CO2 and CO concentrations. Comparisons in the fire compartment and floor of fire show that the FDS model gives a good prediction of temperature and O2 and CO2 concentrations. In the stair shaft and upper floors there are some small differences which are due to the effect of heat transfer to the stairs that was not considered in the model. Overall the study demonstrates that FDS is capable of modelling fire development and smoke movement in a high rise building for well ventilated fires.  相似文献   

15.
Three full-scale model experiments were conducted in a unidirectional tube, which is a part of a metro tunnel with one end connected to an underground metro station and the other end opened to outside in Chongqing, PR China. Three fire HRRs, 1.35 MW, 3 MW and 3.8 MW were produced by pool fires with different oil pan sizes in the experiments. Temperature distributions under the tunnel ceiling along the longitudinal direction were measured. At the same time, CFD simulations were conducted under the same boundary conditions with the experiments by FDS 5.5. In addition, more FDS simulation cases were conducted after the FDS simulation results agreed with the experimental results. The simulation results show that the smoke temperature and the decay rate of the temperature distribution under the tunnel ceiling along the longitudinal direction increase as HRR increases. The smoke exhausts effectively from the tunnel under mechanical ventilation system, whether the emergency vent is activated as a smoke exhaust or an air supply vent. The operation mode of the mechanical ventilation system depends on the evacuation route.  相似文献   

16.
The widely used fuels in practical are blended fuel whose combustion characteristics is more complex than those of the single-component fuel in real fire scenarios. The fire behaviors of aviation kerosene/diethylene glycol dimethyl ether (DGM) blends (R-D) and aviation kerosene/ethanol (R-E) blends were studied using a cone calorimeter. The parameters of pool fires, including the ignition time, burning rate, fuel temperature, heat release rate and combustion yield, were investigated. Janssens’ method was adopted to analyze the ignition times of the two blends. Two types of representative burning processes for blended fuel pool fires were identified. For R-D blends, the burning process is similar to that for typical pure fuels. The process for R-E blends, however, is novel, having two obvious burning processes due to the appearance of an intermediate decay stage. The fuel exhaust mass fraction (approximately 15%) was found to be almost constant throughout the intermediate decay stage. The fuel temperature during the experiment indicated that the liquid surface boiling temperature of R-D blends ranges from 162°C to 200°C depending upon the composition of these blends. For R-E blends, the initial boiling temperature is affected by the ethanol ratio, while the boiling temperature in the second process is equal to the boiling temperature of pure RP-3 kerosene. When the ethanol ratio is lower than 40%, the initial boiling temperature of R-E blends is approximately 120°C; when the ethanol ratio is higher than 40%, the boiling temperature is equal to the boiling point of ethanol. A method for calculating the burning rate of each component in the burning processes of the two blends is put forward, with the results agreeing well with the interpretation of the two burning processes. The ratio of the combustion yield CO2/CO and the carbon conversion ratio increase with the oxygenated fuel ratio, indicating that the combustion is more complete when oxygenated fuel is added. These results will be useful for fire hazard assessment and firefighting in terms of fuel storage and transportation.  相似文献   

17.
Model scale fire tests were performed in tunnels with varying tunnel widths and heights in order to study the effect of tunnel cross-section and ventilation velocity on the heat release rate (HRR) for both liquid pool fires and solid fuel fires. The results showed that for well ventilated heptane pool fires, the tunnel width nearly has no influence on the HRR whilst a lower tunnel height clearly increases the HRR. For well ventilated solid fuel fires, the HRR increases by approximately 25% relative to a free burn test but the HRR is not sensitive to either tunnel width, tunnel height or ventilation velocity. For solid fuel fires that were not well ventilated, the HRRs could be less than those in free burn laboratory tests. In the case of ventilation controlled fires the HRRs approximately lie at the same level as for cases with natural ventilation.  相似文献   

18.
前人单窗口溢流火理论不足以适用于多窗口,且两者溢流火行为存在明显差异。为探究多窗口溢流火现象及机理,基于FDS 建立两种建筑模型,并在立面墙上设置两个平行窗口,研究火源功率(HRR)与窗口间距(D)对平行双窗口溢流火行为、室内空气流率、溢流火焰高度(Hef)以及上层建筑立面墙的影响。结果表明:通风型控制火灾中,空气质量流率系数k 会随着D 的增加不断减小最终趋于稳定;而燃料控制型中,HRR 越大k 越大,且在同一个HRR 工况下,随着D 增大k 会先增大后减小,然后趋于稳定。相同D 下,HRR 越大Hef 越高,同一HRR 下,随D 的减小Hef 先减小后增加,即存在临界转变间距D*,HRR 越大,D*越大。Hˉef/ξ1= cQ*ex2/5 仅适用于单一窗口或多窗口之间影响很小即相对独立的窗口。双窗口溢流火对上层建筑立面墙的危险性远大于单窗口溢流火。D≤1 m 的范围内,立面墙接受热量的面积随着D的增加而增加。  相似文献   

19.
设计了适用于CO2热泵热水器的喷射器。分析了喷射器内部CO2流体压力、速度的变化趋势。建立了基于等压混合理论的喷射器模型,并对带喷射器的CO2热泵热水器系统进行热力学计算和火用损失分析。对带喷射器的热泵系统和带热力膨胀阀的传统热泵系统进行性能比较。考查了喷射系数、气体冷却器出口温度、蒸发温度等参数对系统制热系数的影响。  相似文献   

20.
Naturally ventilated urban vehicular tunnels with multiple roof openings have increased in China. Unnecessary gas (polluted air or fire smoke) are expected to be exhausted out through openings. Whether its safety standards can be satisfied or not still needs to be verified. In this paper, a safe CO concentration was firstly discussed, and a heat risk level of very high to extreme up to 46 °C was given. Secondly, a real 1410 m tunnel was proposed, and a 1/10 scale model tunnel was reproduced. Ambient winds of 0.95 m/s in prototype and 0.3 m/s in model were considered. Under normal traffic test, a track circuit was constructed with model vehicles moving on it to form traffic wind, and once the air velocity was larger than 0.31 m/s, the airflows were found to be not relevant to the Reynolds number. The traffic winds were weakened by openings. For three of all tested traffic, the actual air velocities were larger than the required ones, so its air qualities were satisfied. In firing test, two sets of burning experiments were conducted with which the heat release rates (HRR) were 8.35 kW and 13.7 kW. Large amounts of smoke were exhausted out of openings, and the high-temperature was not significant. Full-scale numerical simulations were carried out to verify the experimental results respectively using Fluent 6.0 for normal traffic and FDS 4.07 for firing. The simulations were compared well with the experiments. Further FDS simulations show that the openings’ mass flow rates are influenced little by ambient temperature; with the increasing length of the buried section, much smoke accumulate inside leading to a high temperature; having 4–5 openings in one shaft group is oversize in the actual engineering design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号