首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiamine deficiency is an impediment to salmonine reproduction in the Great Lakes, but little is known about other measures of dietary quality, such as lipid-soluble vitamins or fatty acids in prey fish. The objective of the present research was to measure selected essential nutrients and thiaminase activity in five Lake Ontario prey fish species (alewife Alosa psuedoharengus, rainbow smelt Osmerus mordax, slimy sculpin Cottus cognatus, threespine stickleback Gasterosteus aculeatus and round goby Neogobius melanostomus). Total thiamine was greater in alewife (13.6 nmol/g) than in the other species (6.2–9.0 nmol/g). In 2006, thiaminase activity was unexpectedly high in goby (12.49 nmol/g/min), sculpin (1.99 nmol/g/min) and smelt (9.24 nmol/g/min). In 2007, thiaminase activity in goby (0.99 nmol/g/min) and smelt (4.94 nmol/g/min) was low compared to 2006, whereas sculpin thiaminase activity was greatest (6.01 nmol/g/min). The causes for this variability are unknown. Thiaminase activity was within the expected range for alewife (4.31–6.31 nmol/g/min) and stickleback (0.06 nmol/g/min). Concentrations of retinoids, carotenoids, vitamin E (tocopherol) and fatty acids also differed among prey fish species. Tocopherol concentrations in goby (12.74 ng/mg), sculpin (25.29 ng/mg), and smelt (22.81 ng/mg) were greater than in alewife (1.59 ng/mg). Goby had the lowest ∑ ω-3 to ∑ ω-6 fatty acid ratio (1.44) when compared to sculpin (2.97) and smelt (2.85). Thiaminase concentrations in alewife and smelt (and possibly goby) suggest that they have the potential to adversely affect natural reproduction in salmonines. Concentrations of carotenoids, retinoids and tocopherol in prey fish appear to be lower than salmonine dietary requirements.  相似文献   

2.
We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5–100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900 pmol g− 1·min− 1 and activities in quagga mussels ranged from 19,500 to 223,800 pmol g− 1·min− 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.  相似文献   

3.
Alewives (Alosa pseudoharengus), the major prey fish for Lake Ontario, contain thiaminase. They are associated with development of a thiamine deficiency in salmonines which greatly increases the potential for developing an early mortality syndrome (EMS). To assess the possible effects of thiamine deficiency on salmonine reproduction we measured egg thiamine concentrations for five species of Lake Ontario salmonines. From this we estimated the proportion of families susceptible to EMS based on whether they were below the ED20, the egg thiamine concentration associated with 20% mortality due to EMS. The ED20s were 1.52, 2.63, and 2.99 nmol/g egg for Chinook salmon (Oncorhynchus tshawytscha), lake trout (Salvelinus namaycush), and coho salmon (Oncorhynchus kisutch), respectively. Based on the proportion of fish having egg thiamine concentrations falling below the ED20, the risk of developing EMS in Lake Ontario was highest for lake trout, followed by coho (O. kisutch), and Chinook salmon, with the least risk for rainbow trout (O. mykiss). For lake trout from western Lake Ontario, mean egg thiamine concentration showed significant annual variability during 1994 to 2003, when the proportion of lake trout at risk of developing EMS based on ED20 ranged between 77 and 100%. Variation in the annual mean egg thiamine concentration for western Lake Ontario lake trout was positively related (p < 0.001, r2 = 0.94) with indices of annual adult alewife biomass. While suggesting the possible involvement of density-dependent changes in alewives, the changes are small relative to egg thiamine concentrations when alewife are not part of the diet and are of insufficient magnitude to allow for natural reproduction by lake trout.  相似文献   

4.
A predominance of alewives (Alosa pseudoharengus), a species having high thiaminase activity, in Lake Ontario lake trout (Salvelinus namaycush) diets, has been related to thiamine deficiency in lake trout eggs during 1994–2004. The late 1990s invasion by round goby (Neogobius melanostomus), that appear to have thiaminase activity of low biological activity, represented a potential to reduce the dietary importance of alewife and, as a result, increase lake trout thiamine levels if they became sufficiently important in lake trout diets. To evaluate whether lake trout thiamine levels increased as alewives were displaced by round gobies in lake trout diets, we collected 199 lake trout ranging from 305 to 893 mm in 2005–2006 and measured their muscle thiamine levels and diet composition. Diet composition (percent by weight) was estimated from MixSIR based on stable isotopes (δ15N and δ13C) measured from lake trout and their prey. Overall, alewife and goby dominated lake trout diet (78%), with round goby dominating the diet (55–57%) of smaller individuals (<600 mm), and alewife dominating the diet (59–73%) of larger, reproductively active individuals. Lake trout muscle thiamine declined with increases in lake trout length and the proportion of alewife eaten (p < 0.01). The proportion of lake trout below 500 pmol/g thiamine also declined; this threshold is associated with a loss of equilibrium in adults. Despite the increasing albeit size-related consumption of round goby, it remains inadequate as muscle thiamine levels in mature lake trout (i.e., >600 mm) during 2005–2006 appear unchanged from levels observed in 1996.  相似文献   

5.
Thiamine (vitamin B1) deficiency in Great Lakes salmonines has been linked to consumption of alewife Alosa pseudoharengus. Thiamine deficiency has been recognized as a possible impediment to lake trout Salvelinus namaycush recruitment in the Great Lakes and Atlantic salmon Salmo salar recruitment in the Finger Lakes and Baltic Sea. Alewife invaded Lake Champlain in 2003 which provided an opportunity to investigate changes in thiamine concentrations in salmonine predators during an alewife invasion. We monitored egg unphosphorylated and total thiamine concentrations in lake trout and Atlantic salmon in 2004 and 2007–2019, assessed whether concentrations were associated with mortality, and examined thiaminase activity in alewife. Total thiamine concentrations in lake trout and Atlantic salmon were significantly lower than in 2004 for seven of the ten collection years for lake trout and for nine of the 12 collection years for Atlantic salmon. Mortality and signs of thiamine deficiency were observed in laboratory-reared Atlantic salmon free embryos but not in lake trout. Average thiaminase activity in adult alewife declined from 5200 pmol/g/min in 2006 to 1500 pmol/g/min in 2012. Our results provide further evidence that a diet that includes alewife reduces egg thiamine concentrations in salmonines. This effect was observed within four years of the invasion of alewife.  相似文献   

6.
Most of the PCB body burden in lake trout (Salvelinus namaycush) of the Great Lakes is from their food. PCB concentrations were determined in lake trout from three different locations in Lake Michigan during 1994–1995, and lake trout diets were analyzed at all three locations. The PCB concentrations were also determined in alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), and deepwater sculpin (Myoxocephalus thompsoni), five species of prey fish eaten by lake trout in Lake Michigan, at three nearshore sites in the lake. Despite the lack of significant differences in the PCB concentrations of alewife, rainbow smelt, bloater, slimy sculpin, and deepwater sculpin from the southeastern nearshore site near Saugatuck (Michigan) compared with the corresponding PCB concentrations from the northwestern nearshore site near Sturgeon Bay (Wisconsin), PCB concentrations in lake trout at Saugatuck were significantly higher than those at Sturgeon Bay. The difference in the lake trout PCB concentrations between Saugatuck and Sturgeon Bay could be explained by diet differences. The diet of lake trout at Saugatuck was more concentrated in PCBs than the diet of Sturgeon Bay lake trout, and therefore lake trout at Saugatuck were more contaminated in PCBs than Sturgeon Bay lake trout. These findings were useful in interpreting the long-term monitoring series for contaminants in lake trout at both Saugatuck and the Wisconsin side of the lake.  相似文献   

7.
Thiamine Deficiency Complex (TDC) limits early life stage survival of salmonines. Consuming fatty prey has been hypothesized as a cause of thiamine deficiency; however, this relationship has not been evaluated in the Laurentian Great Lakes where TDC occurs. We found that alewife (Alosa pseudoharengus) have higher lipid content than other common Lake Ontario prey fish. In addition, alewife were predicted as the most consumed prey for brown trout (Salmo trutta), Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), lake trout (Salvelinus namaycush), and steelhead trout (O. mykiss); however, the relative importance of alewife in diet composition varied within and among species. Overall, species with greater predicted consumption of alewife had lower egg and muscle thiamine concentrations. Negative correlations between thiamine concentrations and both lipid content and fatty acid concentrations (mg/mg of wet tissue) were limited to brown trout. Similarly, negative correlations between fatty acid proportions (i.e., cumulative proportions of polyunsaturated fatty acids [PUFA] and monounsaturated fatty acids [MUFA]) and thiamine concentrations were only observed for brown and lake trout. Combining data from all species produced curvilinear correlations between thiamine concentrations (egg and muscle) and fatty acid composition (eggs and belly flap). Proportions of PUFAs had negative correlations with thiamine concentrations while proportions of MUFAs had positive correlations. These results provide evidence that, in some cases, salmonine fatty acid composition negatively correlates with thiamine concentrations in Lake Ontario; however, additional research is needed to confirm that this mechanism causes TDC in salmonines, and to understand additional factors potentially associated with TDC.  相似文献   

8.
As part of the Lake Michigan Mass Balance Project, total and methyl mercury were determined for lake trout (Salvelinus namaycush) and five forage fish species collected from Lake Michigan near Saugatuck, Michigan, and Port Washington, Sheboygan Reef, and Sturgeon Bay, Wisconsin, between 1994 and 1995. With a mean concentration of 179 ng/g wet wt., whole lake trout total mercury (HgT) concentrations ranged between 27.6 and 348 ng/g wet wt. For combined sites, 1–4 yrs, 5–6 yrs, 7–11 yrs, and 12–15 yrs lake trout mean HgT concentrations were 73.7, 130, 212, and 280 ng/g, respectively. Forage fish species alewife (Alosa pseudoharengus), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), deepwater sculpin (Myoxocephalus thompsoni), and rainbow smelt (Osmerus mordax) had mean HgT concentrations of 63.8, 55.3, 36.7, 51.4, and 35.2 ng/g wet wt., respectively. With the exception of alewife, bloater, and slimy sculpin, all fish species contained approximately 100% methyl mercury (MeHg). Field bioaccumulation factors (BAF) were consistent with a Lake Michigan food chain that is more efficient at transferring MeHg to higher trophic levels than some inland lakes. This and other studies of lake trout from Lake Michigan document decreasing HgT concentrations in lake trout from 1971 to 1985 and constant or increasing concentrations between 1985 and 2000. These observations were supported by a similar trend in Lake Michigan Hg sediment fluxes. To our knowledge, this is the most intense two year study of mercury in fish for any Great Lake or other large fresh water system and is one of the most complete studies of mercury cycling in the Lake Michigan food chain.  相似文献   

9.
Stomachs of trout and salmon (n = 1,904) were collected from fish registered at fishing tournaments held in New York State waters of Lake Ontario between April and September 1983 and 1984. Numbers of adult-sized fish containing identifiable food items were 323 lake trout (Salvelinus namaycush), 289 brown trout (Salmo trutta), 24 rainbow trout (S. gairdneri), 164 coho salmon (Oncorhynchus kisutch), and 63 chinook salmon (O. tschawytscha) Proportional similarity in diet between pairs of species was high and normally exceeded 0.70; diet composition of individual species was similar between years. Alewives (Alosa pseudoharengus) were the main prey of all species during all months and were normally 110–149 mm in standard length. Rainbow smelt (Osmerus mordax) was the second most common prey eaten but was generally found in fewer than 20% of the stomachs examined during any month. Diet diversity was generally higher during April-May than during July-September for coho salmon, lake trout, and brown trout. Larger brown trout ate larger alewife in 1983 but not in 1984. Results suggest that the five trout and salmon species in Lake Ontario are potential competitors.  相似文献   

10.
Wild lake trout recently began to appear in abundance in Lake Champlain after over 40 years of stocking, providing an opportunity to compare the seasonal diet of wild and stocked juveniles. We sampled 2,349 age-0 to age-3 lake trout collected in bottom trawls from April to November 2015–2018, and examined the relationship between diet and spatial heterogeneity in abundance of wild and stocked juveniles. Stocked fish were, on average, the size of wild fish one year older. Wild juveniles had fewer empty stomachs and more items per stomach than stocked fish at each age. Mysis diluviana dominated the diet of age-0 and age-1 wild lake trout until they began to consume fish in fall at age-1. In contrast, the diet of newly-stocked fish (age-1) comprised rainbow smelt (Osmerus mordax), slimy sculpin (Cottus cognatus), alewife (Alosa pseudoharengus), with Mysis only abundant in summer and fall. Number and composition of diet items varied among geographic areas of the lake but did not explain differences in abundance of wild or stocked fish by area. Diet overlap was high between wild and stocked fish for each age class at each season, except in fall at age-0. Differences in the diet of wild and stocked juveniles likely reflect effects of early rearing experience. Recruitment of wild lake trout depends on availability and abundance of Mysis, but our diet data do not provide insight to explain why recruitment is finally occurring after a protracted delay.  相似文献   

11.
Analysis of tissue composition in fish often requires dry samples. Time needed to dry fish decreases as temperature is increased, but additional volatile material may be lost. Effects of 10°C temperature increases on percentage dry mass (%DM) were tested against 60°C controls for groups of lake trout Salvelinus namaycush, rainbow smelt Osmerus mordax, slimy sculpin Cottus cognatus, and alewife Alosa pseudoharengus. Lake trout %DMs were lower at greater temperatures, but not significantly different from 60°C controls. Rainbow smelt and slimy sculpin %DMs were lower at greater temperatures and differences were significant when test temperatures reached 90°C. Significant differences were not found in tests using alewives because variability in %DM was high between fish. To avoid inter-fish variability, 30 alewives were each dried successively at 60, 70, 80, and then 90°C and for all fish %DM declined at each higher temperature. In general, %DMs were lower at greater temperatures and after reaching a stable dry weight, fish did not lose additional mass if temperature remained constant. Results indicate that caution should be used when comparing dry mass related indices from fish dried at different temperatures because %DM was negatively related to temperature. The differences in %DM observed with rising temperature could account for substantial portions of the variability in reported energy values for the species tested. Differences in %DM means for the 60 vs. 80°C and 60 vs. 90°C tests for rainbow smelt and alewife could represent of from 8 to 38% of observed annual energy cycles for Lakes Ontario and Michigan.  相似文献   

12.
Developing an understanding of factors that influence the accumulation and magnification of heavy metals in fish of the Laurentian Great Lakes is central to managing ecosystem and human health. We measured muscle tissue concentrations of heavy metals in Lake Michigan prey fish that vary in habitat use, diet, and trophic position, including alewife, bloater, deepwater sculpin, round goby, rainbow smelt, and slimy sculpin. For each individual, we measured tissue concentrations of four metals (chromium [Cr], copper [Cu], manganese [Mn], and total mercury [THg]), stable isotope ratios for trophic position (δ15N and δ13C), and individual fish attributes (length, mass). Total mercury concentration was positively related to total length and δ15N. Of all species, round goby had among the greatest increases in mercury per unit growth and was most isotopically distinct from other species. Profundal species (bloater, deepwater sculpin, slimy sculpin) had similar high THg tissue concentrations, possibly due to slower growth due to cold temperatures, whereas other species (alewife, round goby, rainbow smelt) showed more variation in THg. In contrast, other metals (Cr, Cu, Mn) had either a negative or no relationship to total length and δ15N, suggesting no bioaccumulation or biomagnification. Potential incorporation of mercury by sportfish may thus be related to species, age, diet, trophic position, and habitat of prey fish. Our findings serve as a foundation for understanding how heavy metals accumulate in Lake Michigan food webs and highlight the continued need for management of metal input and cycling in Lake Michigan.  相似文献   

13.
In the Great Lakes region, thiamine deficiency is considered a recruitment bottleneck for lake trout Salvelinus namaycush and has been correlated with the consumption of non-native alewife Alosa pseudoharengus. While alewife, the most abundant forage fish in Lake Ontario, are the predominant prey for lake trout, they also consume benthic prey such as round goby Neogobius melanostomus. Because variation in the proportion of alewife in lake trout diets is linked to variation in egg thiamine concentrations, understanding how factors such as region of capture and hatchery-strain of lake trout influence diet, are key to understanding the patterns of variation in egg thiamine concentrations observed in this species. With recent increases in natural recruitment of lake trout being observed in the western region of the lake, understanding if egg thiamine is a potential driver is crucial to the rehabilitation of lake trout. In this study, we evaluated egg thiamine concentrations in lake trout during 2019–2020. We found no significant difference in egg thiamine concentrations among regions. However, a stocked Lake Superior deepwater morphotype (Superior Klondike Wild – SKW) showed significantly higher egg thiamine concentrations compared to the lean morphotype including Seneca (SEN) and Lake Champlain Domestic (LCD) strains. An analysis of fatty acid signatures of each hatchery-strain suggested that the SKW strain consumed a higher proportion of round goby than lean strains. Overall, these results suggest that morphotypic differences in the feeding ecology of lake trout can result in biochemical changes which may influence the effectiveness of restoration efforts.  相似文献   

14.
Lake trout (Salvelinus namaycush) are an ecologically and economically important piscivore with reported differences in diet and feeding behaviour throughout its range. Eleven stomach content and stable isotope-based metrics were used to describe diets of 349 lake trout between two years (2013 and 2018) and among geographic zones (west, central, east, Kingston basin) in Lake Ontario. Using individual (e.g., volumetric, %V) and aggregate (e.g., index of relative importance, %IRI) diet metrics, we found an overwhelming dominance of alewife (Alosa pseudoharengus) in lake trout diets among some zones in 2013 (%V = 23.3 – 92.7; %IRI = 12.2 – 99.5) and all zones in 2018 (%V = 83.9 – 96.7; %IRI = 96.5 – 100). Round goby (Neogobius melanostomus) and rainbow smelt (Osmerus mordax) were secondary lake trout prey items with relative diet percentages only marginally reflected by spatial and temporal variation in prey abundance (round goby: %V = 1.0 – 33.3, %IRI = 0.1 – 13.2; rainbow smelt: %V = 2.5 – 54.0, %IRI = 0.1 – 54.0). Carbon (δ13C) and nitrogen (δ15N) isotopic niche areas and orientations were similar across all year-zone combinations reinforcing temporal and spatial consistency in lake trout diet. The findings of this study advance the time series in describing Lake Ontario lake trout diets and can be used to complement stock assessments and management decisions associated with carrying capacity for the diverse salmonid community.  相似文献   

15.
In Lake Michigan, the unintended introduction of invasive species (e.g., zebra mussel, Dreissena polymorpha; quagga mussel, D. rostriformis bugensis; round goby, Neogobius melanostomus) and reduced nutrient loading has altered nutrient dynamics, system productivity, and community composition over the past two decades. These factors, together with sustained predation pressure, have contributed to declines of several forage fish species, including alewife (Alosa pseudoharengus), which has dominated diets of the five primary salmonine species of Lake Michigan for the last 50 years. Salmonines that have inflexible, less complex diets may struggle if alewife declines continue. We analyzed stomach contents of salmonines collected throughout the main basin of Lake Michigan in 2015 and 2016 to investigate diet composition, diet diversity, and individual variation of alewife lengths consumed. Chinook salmon (Oncorhynchus tshawytscha) almost exclusively consumed alewife and had lower diet diversities compared to the other four species, which consumed relatively high frequencies of round goby (brown trout, Salmo trutta; lake trout, Salvelinus namaycush), aquatic invertebrates (coho salmon, Oncorhynchus kisutch) and terrestrial invertebrates (rainbow trout, Oncorhynchus mykiss) along with alewife. Although clear spatio-temporal feeding patterns existed, much of the variation in diet composition and diet diversity was expressed at the individual level. Salmonine populations consumed the entire size range of alewife that were available, whereas individual stomachs tended to contain a narrow range of alewife sizes. Due to their reliance on alewife, it is likely that Chinook salmon will be more negatively impacted than other salmonine species if alewife abundance continues to decline in Lake Michigan.  相似文献   

16.
Lake Ontario supports a diversity of native and non-native salmonids which are managed largely through stocking practices. Ecological changes (e.g., invasive species) altering the food web structure accompanied with shifts in prey abundance, necessitate understanding the trophic niches of Lake Ontario salmonids to aid in management. The objectives of this study were to quantify salmonid (5 species) trophic niches and dietary proportions using stable isotope ratios (δ13C and δ15N) of a large sample set (adult fish (>300?mm; n?=?672) and key offshore prey (5 species, n?=?2037)) collected across Lake Ontario in 2013. Estimates of prey based on stable isotope ratios were similar to stomach contents. Based on stable isotope ratios, non-native prey dominated salmonid diet; in particular alewife (Alosa pseudoharengus) constituted the majority (0.31 to 0.93) of all salmonid diets, and round goby (Neogobius melanostomus) contributed 0.26 and 0.19 of brown trout (Salmo trutta) and lake trout (Salvelinus namaycush) diets, respectively. Trophic niche overlap was high between all salmonids, except lake trout. The largest trophic niche overlap occurred between Chinook (Oncorhynchus tshawytscha), coho (Oncorhynchus kisutch), and Atlantic salmon (Salmo salar), and their reliance on alewife infers a strong pelagic foraging strategy. Lake, brown and rainbow (Oncorhynchus mykiss) trout had larger and/or more distinct trophic niches indicative of a more variable diet across individuals and utilizing different foraging strategies and/or habitats. Overall, Lake Ontario salmonids maintained a high reliance on alewife, and their potential for plasticity in diet provides important information to management regarding population sustainability.  相似文献   

17.
Two hypotheses have been proposed to explain the dynamics of sympatric populations of deepwater sculpin (Myoxocephalus thompsonii) and slimy sculpin (Cottus cognatus). The first hypothesis is that slimy sculpins negatively affect survival of deepwater sculpins, and therefore deepwater sculpins coexist with slimy sculpins only when a keystone predator, lake trout (Salvelinus namaycush), is abundant. According to the second hypothesis, changes in the abundances of the sculpins are driven by interactions with fishes other than sculpins. To evaluate both hypotheses, we applied regression analyses to long-term observations on abundances of both sculpin populations in Lake Michigan during 1973–2002. For slimy sculpin abundance, we considered the predation effect by lake trout and the effect of deepwater sculpins on slimy sculpins. For deepwater sculpin abundance, we considered the effect of alewife (Alosa pseudoharengus) on deepwater sculpins, the predation effect by burbot (Lota lota), and the effect of slimy sculpins on deepwater sculpins. An information criterion was used to select the best regression model explaining the temporal trends. The best model to explain trends in slimy sculpin abundance was the model that included the lake trout predation term only. The best model to explain trends in deepwater sculpin abundance was a model including the alewife and burbot predation terms. Thus, a negative effect of slimy sculpins on deepwater sculpins was not essential in capturing the sculpin community dynamics. Therefore, our results supported the second hypothesis. Further, our results supported the contention that control of the alewife population was a prerequisite for restoration of deepwater sculpin populations.  相似文献   

18.
Alewife (Alosa pseudoharengus) recently became established in Lake Champlain and may compete with native rainbow smelt (Osmerus mordax) for food or consume larval rainbow smelt. The strength of this effect depends partly on the spatial and temporal overlap of different age groups of the two species; therefore, we need a better understanding of factors affecting alewife and rainbow smelt distributions in Lake Champlain. We used hydroacoustics, trawls, and gill nets to document vertical fish distribution, and recorded environmental data during 16 day–night surveys over two years. Temperature, temperature change, and light were all predictors of adult and age-0 rainbow smelt distribution, and temperature and light were predictors of age-0 alewives' distribution (based on GAMM models evaluated with AIC). Adult alewives were 5–30 m shallower and age-0 alewives were 2–15 m shallower than their rainbow smelt counterparts. Adult rainbow smelt distribution overlapped with age-0 rainbow smelt and age-0 alewives near the thermocline (10–25 m), whereas adult alewives were shallower (0–6 m) and overlapped with age-0 alewives and rainbow smelt in the epilimnion. Adult rainbow smelt were in water < 10–12 °C, whereas age-0 rainbow smelt were in 10–20 °C, and adult and age-0 alewives were in 15–22 °C water. Predicting these species distributions is necessary for quantifying the strength of predatory and competitive interactions between alewife and rainbow smelt, as well as between alewife and other fish species in Lake Champlain.  相似文献   

19.
Slimy sculpin (Cottus cognatus) and opposum shrimp (Mysis relicta) formed the primary prey of 319 adult (96–201 mm total length) rainbow smelt (Osmerus mordax) collected day and night at depths of 30–50 m in southeastern Lake Ontario during 21–25 August and 23–31 October 1984. Prey were eaten primarily at night. Between 2000–2400 hours, 77% of rainbow smelt during August and 43% of rainbow smelt during October contained slimy sculpin, compared to less than 10% during the day. Mean number of sculpin per smelt stomach was 1.2 and 1.5, respectively. Mean sizes of slimy sculpin eaten (total lengths of 12.7 mm in August and 21.1 mm in October) were significantly less than those of sculpin (30.4 mm in August and 31.6 mm in October) caught in trawls at the same depths. Occurrence of opposum shrimp in smelt stomachs also peaked at night at 80–90% and an average of up to 2.1 and 5.2 opposum shrimp were found per smelt stomach in August and October, respectively. We infer that rainbow smelt may compete with juvenile lake trout (Salvelinus namaycus) for slimy sculpin in the Great Lakes.  相似文献   

20.
Distribution and abundance of pelagic larval fish were determined for 12 sites on the north shore of Lake Ontario between Pickering and Wellington. Alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) larvae represented over 99.9% of the total catch in the nearshore zone between the 3- and 13-m depth contours. Yolk-sac alewife and rainbow smelt larvae were widespread, while most post-yolk-sac alewife larvae occurred in sheltered waters east of Colborne; developing alewife larvae moved away from shore in upper water strata. Rainbow smelt larvae were concentrated in surface waters shortly after hatching, with a subsequent rapid decline in abundance as larvae moved away from shore to deeper strata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号